| | | |
| :--- | :--- | :---: | :---: |
| | Experiment title: Structure determination of Cs | Experiment |
| ESRF | | number: |
| Beamline: | Date of Experiment: | HS490 |
| ID9 | from: 24 Apr. $1998 \quad$ to: 27 Apr. 1998 | Date of Report: |
| Shifts: | Local contact(s): | 31 Aug. 1998 |
| 9 | M. Hanfland | Received at ESRF: |

Names and affiliations of applicants (*indicates experimentalists) :
K. Syassen, U. Schwarz

M ax-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany
K. Takemura

National Institute for Research in Inorganic Materials, Tsukuba, Ibaraki 305-0044, Japan

Report:

The experiment was very successful. Solving the crystal structure of the phase Cs-V was possible thanks to the excellent resolution at ID9. The main results are illustrated in Figs. 1 and 2. The electronic structure and chemical bonding in Cs-V is currently investigated by first-principle calculations.

A paper has been written on the crystal structure results for $\mathrm{Cs}-\mathrm{V}$, which was accepted for publication in Physical Review Letters. The abstract reads as follows:

The crystal structure of cesium-V

U. Schwarz, K. Takemura, M. Hanfland K. Syassen

The crystal structure of the high-pressure phase cesium-V was investigated using monochromatic synchrotron x-ray diffraction. Full profile refinements of powder diffraction data resulted in a solution with space group Cmca and 16 atoms in the orthorhombic unit cell. The Cs-V structure can be viewed as a distorted fcc structure. Atoms occupy two different Wyckoff positions with 10- and 11-fold coordination, respectively. This new structure type is considered a possible candidate for high-pressure phases of other elemental metals.

Fig. 1: High-resolution angle-dispersive diffraction diagram of cesium-V at 12 GPa measured at the ESRF. The pattern is indexed in the orthorhombic system. The curve marked ' R ' represents the difference between experimental data and the result of a full-profile Rietveld refinement in space group Cmca.

Fig. 2: View of the orthorhombic crystal structure of cesium-V (SG Cmca). There are 11 atoms in the conventional unit cell.

