European Synchrotron Radiation Facility

INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

ESRF

Experiment Report Form

ESRF	Experiment title: Mössbauer study of high-pressure Fe ₇ O ₉ and Fe ₉ O ₁₁ iron oxides	Experiment number: HC-5325
Beamline:	Date of experiment:	Date of report:
ID18	from: 18.04.2023 to: 24.04.2023	30.08.2023
Shifts:	Local contact(s):	Received at ESRF:
18	Georgios Aprilis	
	filiations of applicants (* indicates experimentalists):	1

Xiang Li*, Ilya Kupenko*

European Synchrotron Radiation Facility, 71 avenue des Martyrs, F-38000, Grenoble, France

Denis Vasiukov*, Ekaterina Klyushina*

Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, Lund 221 00, Sweden

Report:

This experiment aimed to investigate the high-pressure and low-temperature behavior of unexplored Fe₇O₉ and Fe₉O₁₁ oxides. The Fe₇O₉ and Fe₉O₁₁ samples were synthesized in Bavarian Geoinstitut (BGI) using a multi-anvil apparatus in the pressure-temperature stability field of the corresponding phases. The analysis of the synthesis products showed that Fe₇O₉ samples were crystalized as high-quality single crystals. However, the synthesis of the Fe₉O₁₁ samples resulted in the mixture of Fe₄O₅ and Fe₅O₆ phases in a proportion equal to the Fe₉O₁₁ stoichiometry, likely due to the high instability of the Fe₉O₁₁ phase at ambient conditions and its decomposition. In this experiment, we, thus, focused on the electronic and magnetic transitions of Fe₇O₉ at high pressure and low temperature.

During the experiment, we performed the energy-domain synchrotron Mössbauer source (SMS) spectroscopy of Fe₇O₉ in membrane-driven cryogenic diamond anvil cells at ID18 up to 83 GPa and down to 5 K (Figure 1a). We identified several magnetic and electronic transitions.

In agreement with the literature data, Fe atoms on both octahedral and prismatic sites in Fe₇O₉ are nonmagnetic at ambient conditions (Figure 1c). Under compression up to ~ 17 GPa at room temperature or cooling down to ~ 240 K at ambient pressure, Fe on octahedral and prismatic sites both simultaneously onset a magnetic ordering (Figure 1c). Upon cooling down to ~ 80 K at ambient pressure, we identified another magnetic transition, clearly seen from the appearance of the new peak in the center of the spectra (Figure 1c: Unknown phase 1). The further compression and cooling down results in several other magnetic transition in Fe₇O₉ (Figures 1a and c: Unknown phase 2 and Unknown phase 3). At room temperature, the spin transition in Fe₇O₉ starts at ~58 GPa and is completed at ~83 GPa, with Fe atoms on both octahedral and prismatic sites being completely in the low spin state (Figure 1c). **Our SMS experiments, thus, clearly demonstrate that Fe₇O₉ has a very complicated high-pressure low-temperature phase diagram and further investigation is needed, particularly the structural details of the new phases.**

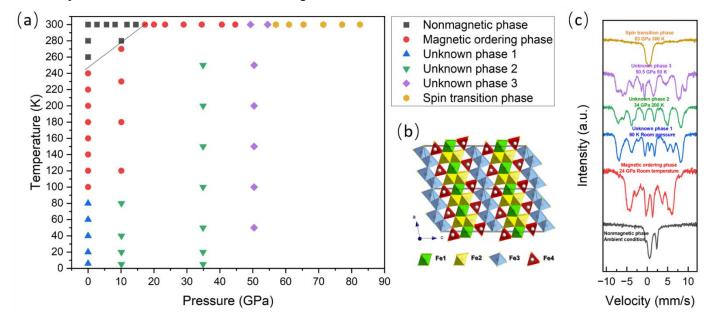


Figure 1. (a) Diagram of pressure-temperature coverage in our SMS experiments. (b) Structure of Fe₇O₉ at ambient conditions. (c) Selected SMS spectra were measured at indicated pressure and temperature conditions. The colors correspond to those in (a).