	. 1	٠.	
		200	٠.
			•
	2		
			٠.
		•	٠
_			_
7	70	D	1
	حد	$oldsymbol{n}$	1
			_

Experiment title: Structure and Dimerization of a Soluble Form of B7-1

Experiment number:

Beamline:	Date of experiment: Various	Date of report:
BM14	from: 1998 to: 199	99
Shifts:	Local contact(s):	Received at ESRF:
3	Vivian Stojanoff	

Names and affiliations of applicants (* indicates experimentalists):

Dr S. Ikemizu

Professor DI Stuart

Professor EY Jones

Report:

B7-1 (CD80) and B7-2 (CD86) are glycoproteins expressed on antigen-presenting cells. The binding of these molecules to the T cell homodimers CD28 and CTLA-4 (CD152) generates costimulatory and inhibitory signals in T cells, respectively. The crystal structure of the extracellular region of B7-1 (sB7-1), solved to 3 Å resolution, consists of a novel combination of two Ig-like domains, one characteristic of adhesion molecules nad the other previously seen only in antigen receptors. In the crystal lattice, sB7-1 unexpectedly forms parallel, 2-fold rotationally symmetric homodimers. Analystical ultracentrifugation reveals that sB7-1 also dimerizes in solution. The structural data suggest a mechanism whereby the avidity-enhanced binding of B7-1 and CTLA-4 homodimers, along with the relatively high affinity of these interactions, favours the formation of very stable inhibitory signaling complexes.