ESR	: EF

Experiment title:	Structural	changes	of NaV ₂ O ₅
at pressures up to 30 GPa	ı		

to: 7 June 1999

Experiment number:

HS809

Beamline: **Date of Experiment:**

Date of Report:

ID9

from: 5 June 1999

31 Aug. 1999

Shifts:

Local contact(s):

Received at ESRF:

9

M. Hanfland

1 - MAR 2000

Names and affiliations of applicants (*indicates experimentalists):

K. Syassen

Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany

Yu. Grin and U. Schwarz

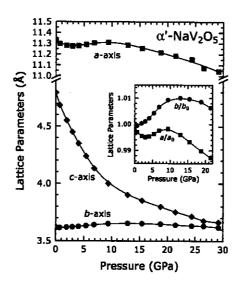
MPI fuer Chemische Physik fester Stoffe, Bayreuther Str. 40, 01187 Dresden

Report:

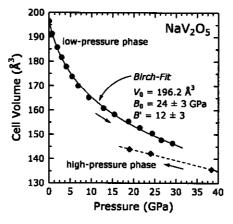
The experiments have been very successful. A paper has been written on the crystal structure results for NaV_2O_5 . The paper has been accepted for publication in the Physical Reviev B - Rapid Communications Section. The abstract is reproduced below.

Structural Properties of NaV₂O₅ under High Pressure

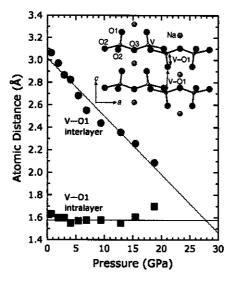
I. Loa, K. Syassen, and R. K. Kremer


Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany U. Schwarz

Max-Planck-Institut für Chemische Physik fester Stoffe, Pirnaer Landstr. 176, D-01257 Dresden, Germany


M. Hanfland

European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble, France


We have investigated the structural properties of NaV₂O₅ under hydrostatic pressure up to 38 GPa at ambient temperature by high-resolution angle-dispersive x-ray powder diffraction. The compression is highly anisotropic with the c direction being the soft axis. The pressure dependences of all three axes exhibit pronounced nonlinearities including negative compressibility for the a and b axis. A reversible structural phase transition towards a pseudotetragonal monoclinic phase starts near 25 GPa and is completed at 35 GPa. Full-profile refinements of the diffraction data provide the internal structural parameters for the low-pressure phase, showing that the structure evolves from a pyramidal towards an octahedral coordination of the vanadium ions.

Lattice parameters of $\alpha-\text{NaV}_2\text{O}_5$ (low-pressure phase) as a function of pressure. Solid lines are guides to the eye. The inset depicts the *relative* changes of a and b.

Unit cell volume of NaV_2O_5 as a function of pressure. The solid line refers to a fitted Birch relation.

Pressure dependence of the intra- and interlayer V-O1 distance.