ESRF	Experiment title: Magnetic circular dichroism on superparamagnetic metal based clusters	Experiment number: HE-651
Beamline: ID-12b	Date of experiment:from: 1-March-2000to: 6-March-2000	Date of report: 21-March-2000
Shifts: 15	Local contact(s): Alberto Tagliaferri	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

Dante Gatteschi¹, Paolo Ghigna^{*,2}, Alessandro Lascialfari^{*,3}.

¹Dipartimento di Chimica, Università di Firenze, Via Maragliano 72,50144, Firenze, Italy ²Dipartimento di Chimica Fisica, Università di Pavia, Viale Taramelli 16, 27100, Pavia, Italy

³Dipartimento di Fisica "A. Volta", Università di Pavia, Via Bassi 6, 27100, Pavia, Italy

We have collected the first XMCD spectra on molecular superparamagnets. In particular, the Mn-L_{III,II}

edges of [Mn₁₂O₁₂(CH₃COO)₁₆(H₂O)₂₄]•2CH₃COOH•4H₂O (in short Mn12) and at the Fe-L_{III,II} edges in [Fe₈O₂(OH)₁₂(tacn)₆]Br₈ 9H₂O (in short Fe8) have been investigated at different temperatures and in different fields. The above compounds are up to now two of the most accurately investigated systems presenting magnetic properties at molecular scale. The structure of Mn12 can be described as formed by an external ring of 8 Mn(III) ions (S=2) and an internal tetrahedron of four Mn(IV) ions (S=3/2). In the low temparature range, the molecule behaves as a magnetic cluster with a ground state of total spin S=10. This state can be loosely described setting all the Mn(III) ions with spin up (S=2x8=16), and all the Mn(IV) ions with spin down (S=-4x3/2=-6). The Fe8 compounds presents a well known "butterfly" spin structure in which S=5/2 Fe(III) ions are coupled via antiferromagnetic interactions: the total spin in the ground state is again S=10. The ground state multiplet both in Mn12 and Fe8 is split by the crystal field effects to leave the $M=\pm 10$ components lying lowest; a "superparamagnetic" barrier Δ/k_B (60K in Mn12 and 27K in Fe8) is formed. In our XMCD experiment (exp. no. HE-651) on Mn12 and Fe8, we have found (in the range 5-100 K) a qualitative agreement between the standard magnetization temperature behavior obtained by SQUID measurements and the one found by analyzing the dichroic signal (figures 1 and 2). In particular for Mn12 the Mn(III) and Mn(IV) contributions are clearly distinguishable (figure 3), and evidence the opposite spin arrangement of the two ions, while for Fe8 the typical two peaks structure of Fe(III) compounds is found (figure 4). A quantitative analysis of the dichroic signals yielded for both Mn12 and Fe8 a negligible $\langle L_z \rangle$ (figures 3 and 4), thus giving the first experimental evidence of the quenching of the angular momentum by the crystal field in these systems. For Mn the spin orbit coupling is not big enough to allow the determination of $\langle S_z \rangle$. This can be done quite reasonably for Fe. For Fe8 we found $\langle S_z \rangle = 0.75$ in μ_B units per Fe atom. Considering that the system is not fully saturated at the minimum temperature and the maximum field that can be obtained now on ID-12B, this value can be regarded to be in reasonable

