	Experiment title:	Experiment number:
ESRF	Hybridisation in dhcp Ce-Y alloys	HE-705
Beamline:	Date of experiment:	Date of report:
ID20	from: 22 September 1999 to: 28 September 1999	24 February 2000
Shifts:	Local contact(s):	Received at ESRF:

28 FFV 2000

Names and affiliations of applicants (* indicates experimentalists):

* Jon Goff, Department of Physics, University of Liverpool

Flora Yakhou

* Pascale Deen, Department of Physics, University of Liverpool

Report:

18

Cerium is one of the most fascinating elements in the periodic table and, as a consequence, it has been studied intensely for many years using theoretical techniques. X-ray magnetic resonant scattering (XMRS) offers a new experimental approach to the study of Ce-based systems. Alloying with nonmagnetic yttrium stabilizes the DHCP phase, and single-crystal samples suitable for magnetic diffraction experiments have been grown using molecular beam epitaxy. The magnetic structure has been determined using neutron diffraction, and the results are consistent with a transverse antiferromagnetic structure with propagation vector (1/2,0,0). The XMRS at the Ce L_{II} edge has been studied using the magnetic scattering beam line ID20 at the ESRF for an alloy of composition $Ce_{0.9}Y_{0.1}$.

Scans of wave-vector transfer through the magnetic reflection at $\mathbf{Q} = (1/2,0,6)$ have been performed as a function of x-ray energy, and the integrated intensities reveal two resonances. The main peak occurs at E = 6.163 keV, which is 2eV above the Ce $L_{\rm II}$ absorption edge. This

is assigned to an electric dipole transition from a 2p core level to the 5d band. A smaller feature is observed 7eV lower in energy, and this is attributed to a quadrupolar transition of a 2p core electron to the 4f level.

The higher energy resonance found in spectroscopic studies of Ce-Ho (ESRF Experimental Report HE-480) is absent. This peak, which is found in the high-pressure FCC phase α -Ce, but is small in the low-pressure phase γ -Ce, is the signature of intermediate-valence behaviour. Thus we conclude that the Ce in this dilute Ce-Y alloys forms an ideal system with the localized 4f electrons characteristic of the other lanthanides.

Figure 1. Scans of x-ray energy in the π - σ channel with Q fixed at magnetic reflections at $T \sim 2 \text{ K}$ (a) for Ce_{0.9}Y_{0.1} and (b) for Ce_{0.7}Ho_{0.3}. The absence of the high-energy peak for Ce_{0.9}Y_{0.1} shows that its valence is close to +3.