ESRF	Experiment title: Stromelysin-3			Experiment number:
<u> LSKI</u>				ls 1509 ls 1658
Beamline:	Date of experiment:		,	Date of report:
ID14 EH1	from:11.06.1999	to:	12.06.1999	_
ID14 EH3	from:25.11.1999	to:	26.11.1999	
Shifts:	Local contact(s): Mc Sweeny, Steffi Arzt			Received at ESRF:

Marc Ruff *

Anne-Laure Gall *

Report:

Stromelysin-3 (ST3) belongs to the family of matrix metalloproteinases (MMPs) which are zinc-dependant extracellular enzymes. The Stromelysin-3 is implicated in both physiological and pathological processes such as amphibian metamorphosis, mammalian embryonic development, mammary gland apoptosis, wound healing and invasive carcinomas. In addition, ST3 overexpression is associated to a poor clinical outcome and its proteolytic activity promotes tumour development in mouse models.

We crystallised a fragment of 20kDa that contains the catalytic domain of the mouse ST3 plus some additional amino-acids on the C-terminal part. The crystals (20µm x 20µm x 50µm) were obtained by the hanging-drop vapour-diffusion method at 4°C in the presence of an inhibitor. They were cryoprotected in liquid ethane in the presence of ethylene-glycol.

Data set collected up to now showed twining problems. New data sets measured with small crystals (10μm x 20μm x 40μm) at a resolution of 2.6Å where not twinned. The crystals belong to the orthorhombic space group (P2₁2₁2₁) and have following cell constants: a=140.10Å, b=148.50Å, c=91.40Å. There are 6 molecules per asymmetric unit ($V_M = 3.96 \text{Å}^3/Da$). The structure was solved by Molecular Replacement using the crystal structure of the human fibroblastic Collagenase-1 (Correlation coefficient = 49.1%; R_{cryst} = 45.5 %). The model was refined with the CNS programs (Rwork=22.15%; Rfree=26.67%). We are now analysing this structure.