	Experiment title: Charge, orbital and/or, magnetic order in $NdNiO_3$	Experiment number : HE 945
Beamlin e: ID20	Date of experiment: from: 7.2.01 to: 13.02.01	Date of report: 27.8.01
Shifts: 1 2	Local contact(s): L. Paolasini	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists): U. Staub* (Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland G. I. Meijer* IBM Research, Zurich Research Laboratory, Rueschlikon, Switzerland		

F. Fauth* ESRF

Report:

A prototype bandwidth controlled metal-insulator transition occurs in RNiO₃, R being the trivalent rare-earth ions (La to Lu) or Y. RNiO₃ exhibit a thermally driven metal-insulator transition at T_{MI} and a further transition to long-range antiferromagnetic order at $T_N \leq T_{MI}$. Since the two fold degenerate Ni orbital e_g is singly occupied, one may expect a significant Jahn-Teller distortion and associated orbital ordering $(x^2-y^2/3z^2-r^2)$ type) in the insulation state of the RNiO₃ compounds [1]. Such a formation of an orbital superlattice could indeed explain the unusual magnetic ordering. Recently, high-resolution synchrotron powder diffraction found that YNiO₃ is monoclinic indicating a charge ordered ground state, however, no indication have been found for the larger R ions (e. g. Nd)[2].

The resonant X-ray scattering experiments focused on reflections of type (0hl) and (h0l) with both h and l odd. For non charge order NdNiO₃, these reflections have no contribution from the Ni site. Fig. 1a shows the energy dependence of the (105) and (015) reflections with σ - σ polarization in the insulating state at 20K. The spectra of the (105) show a strong maximum (minimum for (015)) at 8344 eV, approximately 10 eV above the Ni K-edge (8333 eV). This behavior is a clear evidence that these reflections contain a significant

contribution from the electronic states of the Ni ions. The observed scattering is not due to Templeton & Templeton scattering because we probe a diagonal element in the scattering tensor for σ - σ polarization. The resonant scattering of the (105) reflection is shown in Fig. 1b for different temperatures. The non resonant X-ray intensities as well as the energy dependence decrease for increasing temperatures. Above T_{MI} the scattering is independent of the energy with no longer a resonant contribution from Ni. This shows that there is a single electronic configuration of the Ni ions in the metallic phase. These experiments are direct proof for charge order at the metal-insulator transition of NdNiO₃, even though no monoclinic distortion can be observed with high-resolution powder diffraction.

Fig. 1a Left: Energy dependent X-ray intensity of the (015) and (105) reflections taken at 20K with σ - σ polarization, which are sensitive to the charge order. The lines are guides to the eye. (filled circles (105); open circles (015)). 1b Right: Energy dependent X-ray intensity of the (105) reflection for selected temperatures. The lines are guides to the eye.

¹J. Rodríguez-Carvajal, S. Rosenkranz, M. Medarde, P. Lacorre, M. T. Fernández-Díaz, F. Fauth and V. Trounov, Phys. Rev. B 57, 456 (1998).
²J. A. Alonso, J. L. García-Muñoz, M. T. Fernández-Díaz, M. A. G. Aranda, M. J. Martínez-Lope and M. T. Casais, Phys. Rev. Lett. 82, 3871 (1999).