| <b>ES</b> | RF |
|-----------|----|

| Experiment title:                                                                    | Experiment |
|--------------------------------------------------------------------------------------|------------|
| Charge or orbital ordering in Nd <sub>0.5</sub> Sr <sub>0.5</sub> MnO <sub>3</sub> ? | number:    |
|                                                                                      | HS 1622    |

| _    | _   |         |
|------|-----|---------|
| Doto | Λŧ. | ranart. |

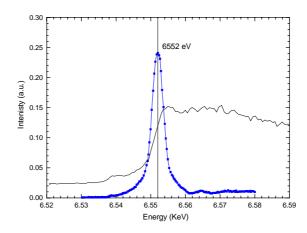
| Beamline: | Date of experiment:                        | Date of report:   |
|-----------|--------------------------------------------|-------------------|
| ID 20     | from: 26 September 2001 to: 2 October 2001 | 27/02/02          |
| Shifts:   | Local contact(s):                          | Received at ESRF: |
| 15        | Matthew Longfield and Nolwenn Kernavanois  |                   |

Names and affiliations of applicants (\* indicates experimentalists):

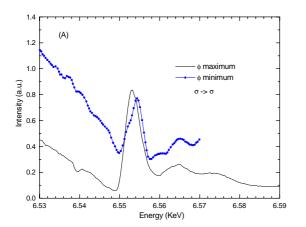
Dr. Joaquín García \*, Dr. Javier Blasco \*, Dra. Mª Grazia Proietti and Dra. Concepción Sánchez

Instituto de Ciencia de Materiales de Aragón, C.S.I.C. – Universidad de Zaragoza, Zaragoza (Spain).

Dra. Gloria Subías \*


European Synchrotron Radiation Facility (E.S.R.F.), Grenoble (France).

## **Report:**


A resonant X-ray scattering study at the Mn K-edge of the charge-ordered perovskite Nd<sub>0.5</sub>Sr<sub>0.5</sub>MnO<sub>3</sub> was performed to prove the main goals of our structural model [1] proposed to explain the charge-orbital ordering transition in manganites with Mn<sup>3+</sup>/Mn<sup>4+</sup> ratio equal to 1.

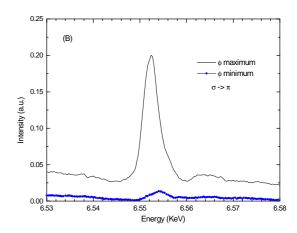

(0 3 0) charge-order and (0 5/2 0) orbital order reflections, in the *Pbnm* setting, were observed in a singlecrystal cut in the [001]<sub>cubic</sub> plane at T=70 K, well below the charge-ordering transition temperature  $T_{co} \sim 150$ K. Twin mosaic was inevitable in the crystal so both, (0 2 0) and (2 0 0) domains, were detected. The characteristic dependence of the intensity of these superlattice reflections on the azimuthal angle and on the polarization of the incident beam (by means of a Cu (220) analyzer) were investigated in detail at fixed temperature.

Figure 1 shows the intensity of the (0.5/2.0) orbital ordering reflection as a function of the photon energy for the  $\pi$ -polarized scattering beam. A maximum is shown at 6552 eV, within 1 eV respect to the Mn Kabsorption edge. A  $\pi$  periodicity of the intensity on the azimuthal angle  $\phi$  has been found at the resonance and no  $\sigma$ -polarized scattered intensity has been detected. Moreover, no (5/2 0 0) peak was observed in agreement with a previous study of Nakamura et al. [2]. On the other hand, for charge-ordering (3 0 0) scattering, either  $\sigma$ - $\sigma$  or  $\sigma$ - $\pi$  contributions have been detected, as it is shown in figure 2(a) and 2(b), respectively, for two  $\phi$ values corresponding to the maximum and minimum resonant intensity.



**Figure 1.** Polarization-resolved  $(\sigma \to \pi)$  scan of intensity plotted versus incident photon energy of the orbital (0.5/2.0) reflection of  $Nd_{0.5}Sr_{0.5}MnO_3$  sample near the Mn K absorption edge at T=70 K. The value of the azimuthal angle corresponds to the maximum resonant intensity in the  $\sigma \to \pi$  geometry.





**Figure 2.** Polarization-resolved scans of intensity plotted versus incident photon energy of the charge (3 0 0) reflection of Nd<sub>0.5</sub>Sr<sub>0.5</sub>MnO<sub>3</sub> sample near the Mn K absorption edge at T=70 K. The two values of the azimuthal angle corresponds to the maximum and minimum resonant intensity in both polarization geometries.

The  $\sigma$ -polarized scattered intensity shows  $\phi$  dependence with  $\pi$  periodicity for both, (3 0 0) and (0 3 0) reflections, which also agrees with that previously reported by Nakamura *et al.* [2] for the (0 3 0) one. Besides, the energy dependence of the intensity of (3 0 0) (or (0 3 0)) resonant reflection has been found to strongly depend on the azimuthal angle value and a shift of ~1.5 eV is observed for the energy resonance between the  $\phi$  values correspondent to the maximum and minimum intensity. For the  $\pi$ -polarization, instead, only the (3 0 0) resonant reflection was detected but the same dependence on the photon energy as for the  $\sigma$ -polarization was observed. However, a  $\pi/2$  periodicity is found for the scattering intensity in this case. A very remarkable feature was the fact that the intensity of the (3 0 0) resonant reflection is different from zero for off-resonance photon energies in the  $\sigma$ - $\pi$  channel. This characteristic is usually related to the presence of resonant magnetic scattering reflections, although in this particular case, it seems to be a much more complex effect.

The main experimental results of this study are perfectly described within the framework of our structural model [1] based on the presence of two Mn atoms with different local geometrical structure (a tetragonal distorted and a regular MnO<sub>6</sub> octahedral environments, respectively) without taking into account any charge or orbital ordering. However, more detailed resonant X-ray scattering experiments are necessary to give a complete description of this system, above all, regarding the presence of non-resonant  $\sigma$ - $\pi$  intensity for the charge-order reflection and the possibility of some charge disproportionate ( $\delta$ ).

- [1] J. García et al., J. Phys.: Condens. Matter 13 (2001) 3243-3256
- [2] K. Nakamura et al., Phys. Rev. B 60(4) (1999) 2425-2428