ESRF	[SiNb ₁₂ O ₄₀] ¹⁶⁻ and [GeNb ₁₂ O ₄₀] ¹⁶⁻ : New Highly Charged Keggin Ions with Sticky Surfaces	Experiment number: CH-1346
Beamline:	Date of experiment:	Date of report:
ID-09	from: 31 January 2003 to: 03 Februry 2003	Feb 12, 2004
Shifts:	Local contact(s):	Received at ESRF:
9	Gavin Vaughan	

Names and affiliations of applicants (* indicates experimentalists):

John B. Parise^{1,2,3,*}, May Nyman⁴, François Bonhomme⁴, Gavin M. B. Vaughan^{5,*}

¹Center for Environmental Molecular Sciences, ²Department of Geosciences, ³Chemistry Department, State University of New York, Stony Brook, NY 11794-2100, USA, ⁴Department of Geochemistry, Sandia National Laboratories, Albuquerque, NM 87185, USA, ⁵ESRF, Grenoble, Cedex 9, France

Introduction

Heteropolyanions are negatively-charged clusters of corner-sharing and edge-sharing early transition metal MO₆ octahedra and heteroatom XO₄ tetrahedra, where the tetrahedra are usually located in the interior of the cluster.^[1] The geometry, composition, and charge of these clusters are varied through synthesis parameters, and cluster properties are highly tunable as a function of these characteristics. Heteropolyanions have been employed in a range of applications that include virus-binding inorganic drugs,^[2] homogeneous and heterogeneous catalysts,^[3, 4] electro-optic and electro-chromic materials,^[5, 6] metal and protein binding,^[7] and as building blocks for nano-structuring of materials^[8]. The α -Keggin geometry, which was first structurally characterized in 1933 by J.F. Keggin^[9] for the phosphotungstic acid (H₃PW₁₂O₄₀) is one of the most widely recognized and thoroughly studied heteropolyanion geometries.^[10] Presented here is the first synthesis and structural characterization of the dodecaniobate Keggin ion in the form of a water-soluble salt containing isolated clusters. To our knowledge, the [TNb₁₂O₄₀]¹⁶⁻ (T =Si, Ge) Keggin ions reported herein have the highest negative charge observed for clusters possessing the plenary Keggin geometry; and also higher charge than the typical mono-, di- and trivacant lacunary Keggin ions. The unprecedented high charge should render these clusters unique with regard to metal binding and other applications involving anion-cation electrostatic interactions in solution or at interfaces.

These $[TNb_{12}O_{40}]^{16}$ clusters $(T = Si, Ge) Na_{16}[SiNb_{12}O_{40}] \cdot 4H_2O$ (1) and $Na_{16}[GeNb_{12}O_{40}] \cdot 4H_2O$ (2) are chemically quite different from the related heteropolymolybdate and heteropolytungstate Keggin ions in their synthetic approach, their pH stability, as well as their charge. The Nb-Keggin ions are synthesized and stable in basic solutions (pH~7-12.5) and decompose in acidic solutions, whereas the Mo- and W- Keggin ions are synthesized and stable in acidic solutions (~ pH=1-3) and decompose in more basic solutions.

Experimental

From the microcrystalline powder of **1**, an approximately cube-shaped crystal with a 15micron diameter was selected for single-crystal X-ray diffraction data collection at ID11. The experimental conditions are summarized as follows: $\lambda = 0.50915$ Å, T = 295 K; cubic system, space-group P -4 3 *n*, *a* = 20.5185(16) Å, V = 8638.5(12) Å³, Z = 8, $\rho_{calc} = 3.41$ g cm⁻³, $\mu = 10.42$ mm⁻¹, F(000) = 8272; 34707 measured reflections, of which 3505 were independent (R_{int} = 0.049). Refinement on F², 206 parameters refined, Flack parameter *x* = 0.108(23); R1 = 0.0503 for 3313 F_{obs} > 4 σ (F_{obs}) and R1 = 0.0530 for all 3505 data, wR2 = 0.1436, goodness of fit S = 1.049. Residual electron density: +2.54/-1.47 e⁻Å⁻³. Hydrogen atoms of water molecules were not located. Structure solution and refinement using Shelx97 [Programs for Crystal Structure Analysis (Release 97-2). G. M. Sheldrick, Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998.]. Further details of the crystal structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49) 7247-808-666; e-mail: crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-413539)

Description of the structure

The structure of $Na_{16}[SiNb_{12}O_{40}] \cdot 4H_2O$ 1 was solved in the cubic space group, *P*-43*n*. The single-crystal data of **1** reveals two crystallographically distinct $[SiNb_{12}O_{40}]^{16-} \alpha$ -Keggin ions in the unit cell. Fig. 1 shows the two Keggin ions in a ball-and-stick model. The Nb1O₆ octahedra of Keggin-1 and the Nb2O₆, Nb3O₆ and Nb4O₆ octahedra of Keggin-2 are distorted in the regular fashion of polyoxometalate d⁰ metals with a long axial Nb-O_c bond to the Keggin-1 Keggin-2 center of the cluster

Fig. 1. Ball-and-stick representation of the two crystallographically unique Keggin ions of **1**.

center of the cluster (2.395(7) - 2.49(1) Å), a short axial Nb-O_t terminal bond (ranging from 1.735(9) to 1.778(8) Å) to the outside of the cluster, and four intermediate equatorial Nb-O_b bonds (between 1.92(1) and 2.03(1) Å).

With further study, the high negative charge of t h e s e n e w heteropolyniobates may be

exploited for greater selectivity or strength of binding in applications that utilize the electrostatic interaction between negatively charged polyoxometalate clusters and positively-charged species or species featuring positively charged regions (i.e. amino acids, proteins, metals, viruses).

References

- [1] M. T. Pope, *Heteropoly and Isopoly Oxometalates*, Springer-Verlag, New York, **1983**.
- [2] J. T. Rhule, C. L. Hill, D. A. Judd, *Chem. Rev.* **1998**, 98, 327.
- [3] I. V. Kozhevnikov, *Chem. Rev.* **1998**, *98*, 171.
- [4] N. Mizuno, M. Misono, *Chem. Rev.* **1998**, 98, 199.
- [5] T. Yamase, *Chem. Rev.* **1998**, *98*, 307.
- [6] M. Sadakane, E. Steckhan, *Chem. Rev.* **1998**, *98*, 219.
- [7] D. E. Katsoulis, *Chem. Rev.* **1998**, 98, 359.
- [8] E. Coronado, C. J. Gomez-Garcia, *Chem. Rev.* **1998**, *98*, 273.
- [9] J. F. Keggin, *Nature* **1933**, 908.
- [10] Y. P. Jeannin, Chem. Rev. 1998, 98, 51.