	In-situ QXAFS for the reactivity of bimetallic PtPd supported catalysts towards H ₂ S: support effect and thioresistance.				ted 30-02-9
Beamline:	Date of experiment:				Date of report:
BM30B	from:	04 /12/02	to:	10/12/02	16/12/02
Shifts:	Local contact(s): Y. Soldo				Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

C. Geantet*, E. Devers*, J. L. Rousset*, S. Arrii*

Institut de Recherches sur la Catalyse, 2 Av. A. Einstein

69626 Villeurbanne Cedex.

Report: The objective of the study was to get structural and kinetic information on Pd-S and Pt-S bonds formed under in-situ conditions upon sulfidation and the reactivity of these bonds during reduction, or catalytic reaction of 1-butene in the presence of H_2/H_2S mixture. Attempt to use QEXAFS for time resolved studies could not be performed du to technical problems. Conventional EXAFS In-situ experiment were performed in fluorescence mode at Pt L_{III} -edge and Pd K-edge. The nature of the specimens i.e. supported nanoparticles of Pt and PtPd allowed to detect the chemical interactions the surface of the particles. The Figure 1 illustrates the transformations of a Pt/Al₂O₃ (1.22 wt% loading) catalysts under various treatments (Pt L edge) and Figure 2 the transformation of Pd neibhouring (Pd K edge)in PtPd/Al₂O₃ (0.12 wt%Pd).

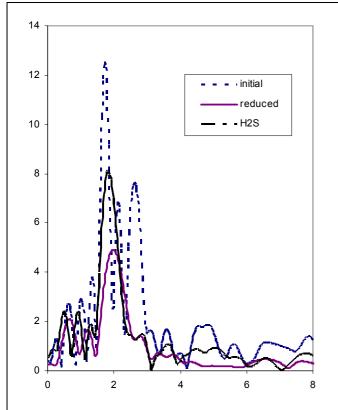


Figure 1 : Fourier transform at Pt $L_{\rm III}$ edge of Pt/Al $_2$ O $_3$ sample after various treatments.

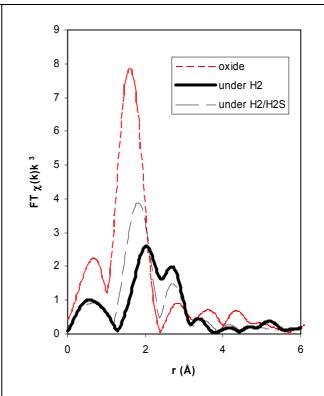


Figure 2 : Fourier transform at Pd K-edge of oxide sample and in-situ reduced and then sulfided sample.