ESRF	Experiment title: FRANKFURT BAG: ATOMIC MECHANISMS OF MEMBRANE PROTEINS	Experiment number : MX-135				
Beamline:	Date of experiment:	Date of report:				
ID14-EH1	from: 07-MAY-2004 8:30to: 08-MAY-2004 8:00	15-Feb-2005				
Shifts:	Local contact(s):	Received at ESRF:				
3	Dr. Elena MICOSSI					
Names and affiliations of applicants (* indicates experimentalists):						
Mauro Mileni*, Hanno Juhnke*, M. Gregor Madej*, C. Roy D. Lancaster Max-Planck-Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main e-mail: Roy.Lancaster@mpibp-frankfurt.mpg.de						

Report:

Quinol:Fumarate Reductase from Campylobacter jejuni (M. Mileni*, C.R.D. Lancaster)

Quinol:fumarate reductase (QFR), couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalysed by mitochondrial complex II (succinate dehydrogenase). QFR from the anaerobic bacterium *Campylobacter jejuni* consists of three protein subunits, FrdA, FrdB, and FrdC. Crystals of this bioenergetically important membrane protein complex have previously been obtained in space group P1 with unit cell dimensions of a = 130.1 Å, b = 130.9 Å, c = 164.2 Å, and α = 108.6°, β = 90.6°, and γ = 118.5° and complete diffraction data to 3.9 Å has been collected in February 2003 at ID14 EH1 (see earlier report). During the two shifts available for this subproject, diffraction data on a new crystal form of space group P2₁ with the unit cell dimensions a = 117.2 Å, b = 130.7 Å, c = 132.9 Å, β =108.0° was collected to 3.24 Å resolution (Table 1) at T = 4°C from just one crystal. The phase problem has been solved by molecular replacement using the coordinates of the QFR from *Wolinella succinogenes* as a search model. The resulting structure is currently undergoing refinement.

Table 1. Diffraction data collected at ESRF ID14-EH1 on a crystal of *C. jejuni* QFR.

	resol. range [Å]	measured reflections	unique reflections	complete [%]	R _{sym} [%]
32_w2_0	70.0-3.24	241,397	61,387	99.2	8.2
	3.36-3.24	<i>23,4</i> 33	<i>6,090</i>	98.8	34.3

Other projects (H. Juhnke*, M.G. Madej*, C.R.D. Lancaster)

The remaining shift of beam time was devoted to (ultimately preliminary) attempts to record a diffraction data set of a variant photosynthetic reaction center from *Rhodopseudomonas viridis*.

Table 2. Preliminary diffraction data collected at ESRF ID14-EH1 on a crystal of a variant *Rp. viridis* RC (P4₃2₁2, a = b = 223.5 Å, c = 113.6 Å)

	resol. range [Å]	measured reflections	unique reflections	complete [%]	R _{sym} [%]
pH7_AS205_1	50.0-3.20	478,663	43,633	90.6	9.6
	3.27-3.20	<i>11,301</i>	<i>2,380</i>	<i>75.0</i>	19.6

References

[1] CRD. Lancaster, A Kröger, M Auer, H Michel (1999) Nature 402, 377-385.