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Report: Photosynthetic water oxidation by photosystem II (PSII) is the source of atmospheric dioxygen and 
thus of fundamental biological importance. Water oxidation takes place at the tetra-manganese complex of 
PSII. This complex additionally contains one calcium ion which is essential for the functioning of water 
oxidation. The location of the Ca ion relative to the four Mn atoms and its coordination environment were 
here investigated by XAS at the Ca K-edge, a particularly challenging BioXAS experiment.  
 
Partially dehydrated multilayer samples for XAS (~200) of highly active PSII membranes were prepared on 
Ca-free Mylar tape. Depletion of bulk Ca was achieved by a Chelex-100 treatment. Chelex-treated samples 
contained 2 ±1.5 Ca atoms per 4 Mn atoms as determined by AAS. XAS at the Ca K-edge was performed at 
50 K using a newly constructed evacuated cryostat where 4 samples were mounted simultaneously on a 
helium-cooled turnable coldfinger. XAS spectra were collected at 45° in fluorescence mode using a large-
area photodiode placed within the cryostat as a detector. A Ca-free, 150 nm thick Si-nitrite window 
facilitated I0 detection; no other foils were passed by the incident X-ray beam (spot size ~1 mm2) or the X-
ray fluorescence prior to detection. XAS spectra were measured in the rapid-scan mode of ID26 within 30 s 
(scan range 3900-4500 eV). The energy axis was calibrated by use of reference substances.  
 
The following results were obtained: 
(1) Figure 1 compares XANES spectra of a PSII sample which contained bulk calcium with a sample where 
the Ca content was reduced to ~2 Ca / 4 Mn (Chelex-treated). Reproducible differences in the XANES 
spectra of ~2 Ca / 4 Mn containing samples (higher pre-edge peak, by 0.3 eV reduced edge energy, lower 
principal maximum) are likely indicative of a lower coordination number and/or symmetry of Ca bound to 
PSII compared to its more symmetric coordination by 7-8 water molecules in the bulk. 
(2) The difference in the Ca K-edge magnitudes (see arrow in Fig. 1) was employed to address radiation 
damage. At an excitation energy of 4038 eV the X-ray fluorescence was recorded as function of time with 
Chelex-treated samples. The increase of the fluorescence intensity within ~400 s (at 50 K, Figure 2) likely 
indicates the release of specifically bound Ca from its binding site into the bulk due to radiation damage. 
Within the duration of the XAS scans (30 s), however, the Ca K-edge magnitude remained unchanged (Fig. 
2, arrow) meaning that Ca stayed bound to the Mn complex; radiation damage was therefore negligible. 
(3) Figure 3 shows the Fourier-transforms (FTs) of EXAFS oscillations (inset) of the ~80 Ca / 4 Mn and the 
Chelex-treated samples. The spectrum of the high-Ca sample is well simulated using a single Ca-O shell 
(Table 1, fit I) and with parameters which are anticipated for fully hydrated bulk Ca.  



 

 
 
 
 
 

Figure 2: Timescan of 
X-ray fluorescence at 
4038 eV. Arrow: 
duration of EXAFS 
scans.
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Figure 3: FTs of EXAFS spectra (insets) of 
~80 Ca / 4 Mn (bottom) and Chelex-treated 
PSII samples (middle). Top: tentative pure 
spectrum of Ca bound to the Mn complex. 
Dashes, simulations (Table 1). 
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Figure 1: Ca XANES spectra of PSII
samples. Dashed line: tentative pure
spectrum of the Ca bound to the Mn
complex obtained by deconvolution.
Inset: pre-edge peak region. 
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