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Report:

Tin, a reasonably corrosion resistant metal due to the presence of a passive oxide/hydroxide surface
film, is rather widely employed in a variety of applications, including a significant number involving humid
and/or aqueous environments. Given this usage, there is a need to understand the electrochemical behaviour
of this metal. Recently, such interest has lead to studies of tin/liquid interfaces to gain an insight into the
growth and structure of the passive films formed [1,2]. From this work it has been deduced that in a borate
buffer electrolyte (pH = 7.5) the nature of the passive film changes from tin (II) hydroxide (~ -0.5 V vs
Ag/AgCl), through SnOy (~ +0.5 V), to SnO,.xH,0 (~ +1.5 V) as the potential of the sample is increased.
The goal of this study was to further characterise these oxidic tin films, employing in situ Sn K-edge X-ray
absorption near edge structure (XYANES).

Measurements were performed on BM?29. Initially, reference XAS spectra were recorded in
transmission mode from metallic Sn, SnO, and SnO,. Very highly polished polycrystalline Sn disks were
employed for the in situ XANES from the tin/borate electrolyte interface. The sample was inserted into an
appropriately designed electrochemical cell from the ESRF’s electrochemistry laboratory, which was
attached to a high precision three circle diffractometer. Such a mounting was necessary in order to be able to
easily impinge the x-ray beam onto the Sn surface at below the critical angle for total external reflection, to
achieve a high sensitivity to the Sn/electrolyte interfacial region. The angle for total external reflection was
determined empirically during the measurements. A solid state fluorescence detector was used to record the
in situ XANES data in this grazing incidence geometry.

Reference XANES spectra from metallic Sn, SnO, and SnO, are displayed in Figure 1. Clear
differences in spectral profiles are apparent, thus allowing these data to be used as fingerprints for
interpreting the in situ XANES from the Sn/electrolyte interface. Acquisition of these latter XANES data was
not so straightforward. Initially, we found that the critical angle for total external reflection was not very
well defined, and so we had some difficulty in orienting the sample correctly. We believe that the origin of
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Figure 1. Sn K-edge XANES of Sn, SnO, and SnO,.  Figure 2. Sn K-edge XANES of Sn/borate buffer
electrolyte interface acquired at potentials of
approximately —1.1 V and +1.5 V.
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Figure 3. Plots comparing the XANES difference spectrum (solid line), generated by subtracting the two
spectra in Figure 2 (i.e. (+1.5 V)-(-1.1V)), and the reference XANES in Figure 1.

this problem may be the roughness of the tin samples, which proved to be rather challenging to polish to the
required flatness, due to the fact that tin is a relatively soft material. Once oriented, we also found that the
XAS data were not always consistent i.e. spectra recorded consecutively, without changing any experimental
parameters, sometimes varied significantly. A possible source of this trouble is small instabilities in the
beam position combined with the very grazing angle of beam incidence (30 — 40 mdeg).

Despite the hurdles described above, we were able to make some progress towards our experimental
target. Figure 2 shows XANES spectra recorded from the Sn/electrolyte interface, obtained with the sample
at potentials of approximately —1.1 V and +1.5 V. For the lower potential it is known [1,2] that the Sn
surface is metallic, whereas at the more anodic potential an oxidic film should be present. Although the
spectra are not of very high quality, and their normalisation is rather imperfect, it may be argued that an
increase in the intensity of the resonance is discernable. Such a trend is consistent with that observed in the
reference spectra (Figure 1) on going from Sn to SnOy. To examine this change further we have subtracted
the XANES spectrum recorded at —1.1 V from the one acquired at +1.5 V. In figure 3 the resulting difference
spectrum is compared to each of the three reference spectra. From this comparison one may conclude that at
+1.5 V the oxide film has SnO-like character, which contradicts Refs. 1,2. One possible explanation for this
discrepancy is the higher surface sensitivity of the techniques used previously. Clearly, given the problems
associated with our study, further measurements are required to confirm, or otherwise, our result.

Referemces
[1] R. Diaz et al, J. Braz. Chem.Soc. 14, 523 (2003).
[2] R. Diaz et al, J. Phys. Chem. B 108, 8173 (2004).



