ESRF	Experiment title: Fluoride scheelites at high pressures	Experiment number: HS-2179
Beamline :	Date of experiment:	Date of report:
BM01A	from: 09/04/2004 to: 13/04/2004	10/01/2005
Shifts:	Local contact(s):	Received at ESRF:
12	V. Dmitriev	
Names and affiliations of applicants (* indicates experimentalists):		
A. Grzechnik*, Univ. País Vasco		
K. Friese*, Univ. País Vasco		
HP. Weber*, SNBL		
V. Dmitriev*, SNBL		

Report:

The results of this project were published in two publications in J. Phys.: Condens. Matter.

Andrzej Grzechnik, Wilson A. Crichton, Pierre Bouvier, Vladimir Dmitriev, Hans-Peter Weber, and Jean-Yves Gesland - Decomposition of LiGdF₄ scheelite at high pressures - J. Phys.: Condensed Matter 16, 7779 (2004)

<u>Abstract</u>

High-pressure behavior of LiGdF₄ scheelite ($I4_1/a$, Z = 4) was studied by measuring its angledispersive x-ray powder diffraction patterns as a function of pressure and temperature in a diamond anvil cell and a large-volume Paris-Edinburgh cell using a synchrotron radiation source. Upon compression to about 11 GPa at room temperature, the stable structure is of the scheelite type. At higher pressures and T = 298 K, new reflections occur that can not be explained with the fergusonite structural model previously observed in LiYF₄. Associated is the growth of an amorphous component. All the transformations are largely irreversible upon decompression. Annealing of the sample at 13.1 GPa led to a nucleation of a solid solution series $\text{Li}_{y}\text{Gd}_{1-y}\text{F}_{3-2y}$ (*P*6₃/*mmc*, *Z* = 2) and traces of LiF. The new material $\text{Li}_{y}\text{Gd}_{1-y}\text{F}_{3-2y}$ (*P*6₃/*mmc*, *Z* = 2) was recovered to ambient conditions but back-transformed to a YF₃-type phase (*Pnma*, *Z* = 4) after regrinding at room temperature in several hours. These observations are discussed in relation to the high-pressure high-temperature systematics of the AMX₄ type compounds.

Figure 1 Selected x-ray powder patterns collected in a diamond anvil cell at different pressures upon compression and room temperature, $\lambda = 0.7100$ Å (Swiss Norwegian Beamlines, ESRF).

Figure 2 Selected x-ray powder patterns collected in a diamond anvil cell at different pressures upon decompression and room temperature, $\lambda = 0.7100$ Å (Swiss Norwegian Beamlines, ESRF). Stars indicate reflections due to Cr-doped Al₂O₃ (ruby) used as a pressure calibrant.

Figure 3 Selected x-ray powder patterns collected in a large-volume Paris-Edinburgh cell at different pressures and temperatures, $\lambda = 0.15816$ Å (ID30 Beamline, ESRF).

Figure 4 Comparison of measured patterns for the recovered sample immediately after the experiment and after 42 hours (ID30 Beamline, ESRF) with calculated patterns for pure GdF₃ in the tysonite ($P6_3/mmc$, Z = 2, a = 3.985(1) Å, c = 7.081(2) Å) and \Box -YF₃ (Pnma, Z = 4, a = 6.696(2) Å, b = 6.962(2) Å, c = 4.342(1) Å) structures, $\lambda = 0.15816$ Å. The (011) reflection in the tysonite type is marked. The arrows indicate the (111) reflection due to LiF.

Andrzej Grzechnik, Karen Friese, Vladimir Dmitriev, Hans-Peter Weber, Jean-Yves Gesland, and Wilson A. Crichton - Pressure-induced tricritical phase transition from the scheelite to the fergusonite structures in LiLuF₄ - J. Phys.: Condens. Matter, in press (2005)

Abstract

LiLuF₄ scheelite ($I4_1/a$, Z = 4) has been investigated at high pressures using synchrotron angledispersive x-ray powder diffraction in a diamond anvil cell at room temperature. At 10.7 GPa, it reversibly undergoes a tricritical phase transition to the fergusonite structure (C12/c1, Z = 4), a distorted modification of the scheelite type. No other phase transition occurs in this material up to 19.5 GPa, the highest pressure in this study. Such a high-pressure behavior is compared with the pressureinduced transformations in LiYF₄ and LiGdF₄, adding on to our knowledge of the structural systematics in LiMF₄ compounds.

Figure 1 Selected x-ray powder patterns of LiLuF₄ upon compression ($\lambda = 0.7100$ Å)

Figure 2 Observed, calculated, and difference x-ray powder patterns for fergusonite LiLuF₄ at 11.9 GPa ($\lambda = 0.7100$ Å) - C12/c1, Z = 4, a = 7.2556(13) Å, b = 10.3510(17) Å, c = 4.8434(8) Å, $\beta = 136.136(5)^{\circ}$. Vertical markers indicate Bragg reflections.

Figure 3 Pressure dependencies of lattice parameters, unit cell volumes, and axial ratios in LiLuF₄ (black symbols) LiYF₄ (blue symbols) and LiGdF₄ (red symbols) normalized to the respective values at ambient pressure. Full and open symbols stand for the scheelite ($I4_1/a$, Z = 4) and fergusonite (non-standard setting I12/a1, Z = 4) polymorphs, respectively.

Figure 5Pressure dependence of the fourth degree of the spontaneous strain in themonoclinic phase of $LiLuF_4$. The straight line is the best least-square fit.