	Experiment title: Uranium sorption onto natural iron colloids in mine waters	Experiment number: 20-01-632
Beamline: BM 20	Date of experiment: 28.04.2005 from: 03.11.2005 to: 05.11.2005	Date of report: 08.03.2006
Shifts: 12	Local contact(s): A. Rossberg	Received at ROBL:
Names and affiliations of applicants (* indicates experimentalists): Dr. Kai-Uwe Ulrich ${ }^{1 *}$ Dr. André Rossberg ${ }^{1,2_{*}}$ Dr. Andreas Scheinost ${ }^{1,2 *}$ Dr. Harald Zänker ${ }^{1}$ ${ }^{1}$ Forschungszentrum Dresden - Rossendorf e.V., Institute of Radiochemistry, B.P. 510119, D-01314 Dresden, Germany ${ }^{2}$ ROBL-CRG at the ESRF, B.P. 220, F-38043 Grenoble Cedex, France		

Report:

We applied Fe K-edge EXAFS spectroscopy to elucidate the molecular structure of ferrihydrite contributing by $\sim 65 \%$ to colloids of an abandoned uranium mine (\# M2) [1]. Ferrihydrite reference samples were prepared in a N_{2} flushed glove box ($p_{\mathrm{CO} 2}<0.2 \mathrm{~Pa}$) both in the absence ($\# \mathrm{FhN}_{2}$) and in the presence of $50 \mu \mathrm{M} \mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\# \mathrm{FhUN}_{2}\right)$ by rising the pH of a $1 \mathrm{mM} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ solution with NaOH up to 5.5 . EXAFS spectra of the frozen pastes were collected in transmission mode using a He cryostat (30 K).

Results.

The first peak of the Fourier transform (FT) corresponds to five or six oxygen atoms coordinated to the absorbing Fe atom by two different atomic distances (R) (Fig. 1a). Up to three O-atoms were found to be coordinated with $R_{\mathrm{Fe}-\mathrm{O} 1} \sim 1.94 \AA$ and $R_{\mathrm{Fe}-02} \sim 2.06 \AA$, respectively. The second FT peak fits to three Fe-Fe shells with $R_{\mathrm{Fe}-\mathrm{Fe} 1}=2.89-2.96 \AA, R_{\mathrm{Fe}-\mathrm{Fe} 2} \sim 3.07 \AA$, and $R_{\mathrm{Fe}-\mathrm{Fe} 3}=3.37-3.45 \AA$. Including a forth Fe shell with $R_{\mathrm{Fe}-\mathrm{Fe} 4}=3.92-4.00 \AA$ improved the fit of oscillations at higher k values and explained the third FT peak. Neither the EXAFS of sample FhUN ${ }_{2}$ nor the calculated difference with spectrum FhN_{2} give evidence on the adsorbed U(VI).

Discussion.

The splitting of the O-shell into two subshells is due to $\mathrm{Fe}-\mathrm{O}$ and $\mathrm{Fe}-\mathrm{OH}$ bonds, confirming the formation of octahedral clusters by deprotonation [2]. Although the Fe-Fe distance of $2.89 \AA$ suggests face sharing octahedra in M2, the structural data do not support hematite, but instead a highly polymerized intermediate stage on the transition from ferrihydrite to hematite [3]. The $\mathrm{Fe}-\mathrm{Fe}_{1}$ distance of $\sim 2.95 \AA$ cannot be unequivocally attributed to either face sharing or edge sharing linkage. Therefore, the calculated distances of $3.00 \pm 0.07 \AA$ and $\sim 3.45 \AA$ are explained by edge sharing and double-corner sharing linkage, respectively [4]. Two Fe octahedra sharing a single corner exhibit an $\mathrm{Fe}-\mathrm{Fe}$ distance of 3.92$4.00 \AA$ [5]. The type and number of linkages were combined to a representative basic unit (indicated by dashed circle in Fig. 1b) which consists of six $\mathrm{Fe}(\mathrm{O}, \mathrm{OH})_{6}$ octahedra in planar arrangement; four of them are coordinated by edges, and two octahedra are linked to this tetrameric unit by sharing doublecorners. Each basic unit representing a section of the homogenous network is linked to two other units of the same type by sharing a single corner (modified from [4]).

Fig. 1a. Fe K-edge EXAFS spectra and FTs of ferrihydrite (M2: mine water colloid sample; FhUN 2 and FhN_{2} : samples prepared with and without $\mathrm{U}(\mathrm{VI})$ at $\left.p_{\mathrm{CO} 2}<0.2 \mathrm{~Pa}\right)$. b. Molecular topology of ferrihydrite fundamental unit fitting these EXAFS data.

References

[1] Ulrich K.-U., Rossberg A., Scheinost A.C., Foerstendorf H., Zänker H., Jenk U. (2006) Speciation of colloid-borne uranium by EXAFS and ATR-IR spectroscopy. In: Uranium in the Environment, Mining Impact and Consequences (eds. B.J. Merkel and A. Hasche-Berger). Springer Berlin, pp. 137-147.
[2] Combes J.M., Manceau A., Calas G., Bottero J.Y. (1989) Geochim. Cosmochim. Acta 53, 583-594.
[3] Combes J.M., Manceau A., Calas G. (1990) Geochim. Cosmochim. Acta 54, 1083-1091.
[4] Rose J., Manceau A., Masion A., Bottero J.-Y. (1997) Langmuir 13, 3240-3246.
[5] Manceau A., Drits V.A. (1993) Clay Minerals 28, 165-184.

