ESRF	Experiment title: Cytochrome bc_1 complex from S . $cerevisiae$, BAG Frankfurt	Experiment number: MX-336
Beamline: ID14 EH1	Date of experiment : from: 03.03.2005 at 8.00 to: 03.03.2005 at 23.59	Date of report : 03.02.06
Shifts:	Local contact(s): Dr. Celia Romao and Dr. Stephanie Monaco	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

Dept. Molecular Membrane Biology, Max-Planck-Institute for Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt, Germany

Report:

In the mitochondrial respiratory chain, the soluble protein cytochrome c shuttles electrons from the cytochrome bc_1 complex (QCR) to cytochrome c oxidase. QCR from yeast is a mitochondrial transmembrane complex with a molecular weight of 466 kDa. The structure of QCR with its substrate cytochrome c bound was previously determined at 3 Å resolution (Lange and Hunte, 2002). We were recently able to improve the structure of the electron transfer complex to 1.9 Å resolution. With the results from this structure, structure-function analysis studies were initiated, which focus on mutagenesis of the main interacting residues and crystal contacts. During the beamtime, two datasets were collected of the QCR complex with a H45A cytochrome c variant bound. First dataset: resolution 3.0 Å, R_{sym} 7.5 %, $I/\sigma I$ 14.9, completeness 95.1 %, space group P2₁, unit cell dimensions 147.4 165.17 194.65 90 104.16 90. The structure of the electron transfer complex was refined at 3.0 Å, Rfree= 28 % Rcryst= 23%. Second data set: resolution 3.0 Å, R_{svm} 5.4 %, I/σI 16.3, completeness 91.7 %, space group P2₁, unit cell dimensions 146.3 164.3 195.2 90 104.3 90. The structure of the electron transfer complex was refined at 3.0 Å, Rfree= 26.9 % Rcryst= 21.7%. The data collection was hampered by the substantially lower quality of the variant crystals compared to the wild type crystals.

Another major project is the study of redox-dependent conformational changes of the electron transfer complex. For this purpose, datasets at various redox states have been already

^{*}Sozanne Solmaz & Carola Hunte

collected (ascorbate-reduced, native, oxidized). To complement the studies, a dataset of an oxidized crystal, which was cocrystallized and soaked with ferricyanide, was collected (Resolution 3.4 Å, R_{sym} 10.1 %, I/ σ I 12.8 , completeness 95.6 %, space group P2₁, unit cell dimensions 145.2 165.9 195.0 90 104.145 90). The structure has been refined to 3.4 Å, Rfree=28 % Rcryst=22%.