ESRF	Experiment title: Superconducting superalattices: XAS and RIXS investigation of CuO ₂ plane hole doping	Experiment number: HE-1735
Beamline: ID08	Date of experiment: from: 16/02/05 to: 22/02/05	Date of report : 17/03/05
Shifts: 18	Local contact(s): Dr Nicholas BROOKES (e-mail: brookes@esrf.fr)	<i>Received at ESRF:</i>
Names and affiliations of applicants (* indicates experimentalists): Carmela ARUTA*, INFM & University of Rome "Tor Vergata", Italy Giuseppe BALESTRINO, INFM & University of Rome "Tor Vergata", Italy Lucio BRAICOVICH, INFM & Politecnico di Milano, Italy Nicholas BROOKES*, ESRF Francesca FRACASSI*, INFM & Politecnico di Milano, Italy Giacomo GHIRINGHELLI*, INFM & Politecnico di Milano, Italy Pier Gianni MEDAGLIA*, INFM & University of Rome "Tor Vergata", Italy Antonello TEBANO , INFM & University of Rome "Tor Vergata", Italy		

Report:

In this experiment we aimed to study the local electronic structure and in particular the symmetry properties of the $[BaCuO_{2+x}]_2/[CaCuO_2]_n$ superlattices (briefly 2 x *n*) at the Cu sites. To that purpose we used both X-ray Absorption Spectroscopy (XAS) and high resolution Resonant Inelastic X-Ray Scattering (RIXS) measured at the L_{2,3} Cu edges (930-950 eV)

It is known that in this special family of artificially layered cuprates an accurate control of doping level in the CuO₂ superconducting planes can be achieved without changing the local crystalline structure at the Cu sites. Namely, by maintaining fixed the "doping power" of the charge reservoir block (i.e. the 2 BaCuO_{2+x} layers in the 2 x *n* supercell), it is possible to finely tune the density of holes in the CuO₂ superconducting planes by increasing the number *n* of CaCuO₂ layers (infinite layers, IL).

We recorded XAS and RIXS spectra on a variety of superlattices and on the IL-like compounds $BaCuO_{2+x}$ and $CaCuO_2$. In detail, absorption measurements were performed on three different series of artificial $[BaCuO_{2+x}]_2/[CaCuO_2]_n$ superlattices, with *n* ranging from 2 up to 13. Furthermore, the $BaCuO_{2+x}$ phase and two $CaCuO_2$ Infinite Layer grown on different subtrates have been investigated. In order to enhance either the *in-plane* or the *out-of-plane* contributions, we recorded absorption spectra at different incidence angles, both with vertical (V) and horizontal (H) linear polarization. The absorption spectra concerning a series of five samples are reported in figure 1. From a preliminary analysis, it can be deduced the relatively strong differences in the apical oxygen content, between the metallic $BaCuO_{2+x}$ phase, and the insulating $CaCuO_2$ Infinite Layer structure. The spectra of (2 x n) superlattices show mixed features coming from the Ba-based charge reservoir block and from the Ca-based Infinite Layer block. A trend is clearly evident, starting from the optimally doped (2 x 2) supercell (having a superconducting zero resistance temperature around 75 K) toward the strongly underdoped and semiconducting 2 x 12 structure.

This trend seems to be confirmed by RIXS measurements, performed on three superlattices (2 x *n*, with n=2,6,13) and on the IL-like constituents compounds across the copper $I_{2,3}$ edges, in 20° grazing incidence geometry, with vertical polarization [GI,V] and horizontal polarization [GI,H]. In fig. 2 the RIXS spectra of these five

samples, recorded at the Cu L₃ peak are shown. Both the *dd* and the charge-transfer excitations are present in the spectra, so that a systematic comparison of the charge doping effect is possible. Even before the necessary accurate analysis of the spectra we can see from the raw data that the main *dd* excitation energies are not influenced by the doping level. On the other hand the incident energy dependence of the RIXS spectra depends on the average doping of the CuO planes (one example for the 2 x 2 sample is shown in figure 3 for excitations energies above the main L₃ peak, which is labelled as F; every letter indicates a 1 eV step in the excitation energy).

Furthermore for some of the samples a series of RIXS spectra across the copper L_3 edge have been recorded at the liquid Helium temperature (i.e. in the superconducting state for the 2 x 2 sample).

Fig. 2

