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Report: 
 
We have prepared responsive gels based on polyelectrolytes (polymethacrylic acid and polydiethylaminoethyl 
methacrylate) and a manganate-based reaction that oscillates pH. 1, 2 A weak polyacid will, at low pH, be 
essentially charge-neutral, because the degree of dissociation of the carboxylic acid groups is relatively low. In 
these circumstances water is a poor solvent for the polyacid and the gel collapses. However, as the pH is 
increased the acid groups dissociate and the polymer acquires a net charge; mutual repulsion between the 
charged chains causes them to stretch away from each other. The opposite pH response is observed for a 
polybase. By oscillating the pH one can induce a macroscopic oscillation in the dimensions of a gel of a factor 
of 10 or more. Using triblock copolymers with hydrophobic end-blocks and polyelectrolyte mid-blocks we can 
make actuator systems that operate in one, two or three dimensions by use of lamellar, cylindrical and 
spherical gels, respectively.  Previously, we have successfully studied the response of a polyacid triblock,  



 
which expands in 3 dimensions, in a pH oscillating chemical reaction both microscopically (SAXS) and 
macroscopically using an optical microscope. The change in volume was found to be affine over 5 orders of 
magnitude3. 
 
Recently we have performed such experiments at Dubble using a polybase hydrogel, where we have monitored 
its pH-actuator behaviour. A sample of PMMA-b-PDEA-b-PMMA was held in the manganate-based pH-
oscillatory system and was analysed via optical microscopy and SAXS. Autonomous volume transitions of the 
polymer gel were observed over 7 pH-oscillations, with a typical macroscopic collapsed gel length of 1.5 mm 
and an expanded length of 3.5 mm. The corresponding microscopic lengths varied between 325 Å (collapsed) 
and 650 Å (swollen). A plot of the micro- and macroscopic expansion showed that the polybase system 
affinely changes shape throughout the oscillations (see Figures 1 and 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The response of the polymer relies on the diffusion of [H+] ions throughout its structure; therefore a larger 
surface area increases the rate of diffusion and thus induces a more rapid response. A more rapid response will 
lead to more powerful systems. 
 
Electrospinning polymer fibres enables one to fabricate extremely small (diameter ~ 5 microns), aligned 
strands of pH-responsive materials, which can be intertwined or woven together to create “rope” like 
structures. Such bundles of fibres resemble muscle structures found in the body. Natures’ approach to solving 
this problem is to use bundles of muscle fibres in a bath of chemical fuel (ATP) with the macroscopic 
contraction being the sum of small contractions by many microscopic fibres. Although the forces associated 
with synthetic pH-responsive polymer systems are many orders of magnitude lower than that of actin and 
myosin3, the fundamental principles are the same, fast diffusion by using small diameter fibres and macroscopic 
motion through the serial addition of many small contractions. The natural evolution of this research is 
therefore to move towards small gel pieces (fibres) that will give a faster response and therefore be more 
powerful. 
Electrospun fibres however, do not microphase separate into distinct microdomains (due to instantaneous 
removal of solvent during their production) and therefore their microscopic length scale changes cannot be 
followed by SAXS. To overcome this, the fibres can be annealed in a solvent atmosphere to allow the polymer 
chains to flow amongst one another to adopt a more ordered conformation whilst still maintaining its fibre  
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Figure 1. pH trace (top), macroscopic 
data (middle) and microscopic, SAXS 
data (bottom) during the pH-oscillation 
reaction. 

Figure 2. Micro- and Macroscopic 
Expansion for PMMA-b-PDEA-b-
PMMA, shown as percentage 
expansion. 
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structure. The annealing process was monitored by SAXS (at Dubble) and Scanning Electron Microscopy 
(SEM) (Figure 3).  Figure 4 shows how the annealing process alters the polymer conformation and consequent 
SAXS patterns of the material. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. SAXS data and SEM micrograph images of the THF annealing process of electrospun fibres 
processed from a PMMA-PDEA-PMMA/THF solution (35 wt%). 
 
The PMMA-b-PDEA-b-PMMA fibre annealing process, using THF or DMF, follows the same fundamental 
steps; going from individual fibres with random polymer chain morphology to a dissolved material via a gel-
like structure with a more ordered copolymer morphology. During annealing, the fibres coagulate as their 
external surface becomes dissolved, allowing the polymer chains to move around to adopt a lower energy 
conformation. The more the polymer is annealed, the more order is introduced (as confirmed by SAXS) until 
the material becomes close to a “holey” film-like structure, then the polymer starts to become dissolved. As 
the polymer dissolves the order is reduced until complete dissolution of the polymer chains is achieved. Using 
this information we can now optimise the morphology of the polymer fibre bundle to give an ordered 
microdomain structure with a large external surface area to allow the desired rapid pH-response.  
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Figure 4.  
 
Schematic diagram of the block 
copolymer macromolecular 
arrangement after electrospinning and 
annealing (solution, electrospun fibre 
and gel) depicting the processes 
measured in Figure 3. 
 



 


