ESRF	Experiment title: Three-Dimensional Structure of Human Monoamine Oxidase A			Experiment number: MX267 MX394
Beamline:	Date of experiment:			Date of report:
ID14-3 ID14-1 ID23 ID14-1 ID14-3 ID14-4 ID14-3	from:2 Oct 04from:30 Oct 04from:15 Dec 04from:13 Feb 05from:19 Mar 05from:16 May 05from:18 Jun 05	to: to: to: to: to: to: to: to:	3 Oct 04 31 Oct 04 16 Dec 04 14 Feb 05 20 Mar 05 17 May 05 19 Jun 05	26 July 2005
Shifts: 10	Local contact(s):			Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):				
Luigi De Colibus, Claudia Binda, Stefano Rovida, Andrea Mattevi				
Dept. Genetics and Microbiology, University of Pavia Italy				

Report:

Colibus, L., Li, M., Binda, C., Lustig, A., Edmondson, D.E., Mattevi, A. (2005). Threedimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. *Proc. Natl. Acad. Sci.*, in press

Abstract. The three-dimensional structure of recombinant human monoamine oxidase A

(hMAO A) as its clorgyline-inhibited adduct is described. Although the chain-fold of hMAO

A is similar to that of rat MAO A and human MAO B (hMAO B), hMAO A is unique in that

it crystallizes as monomer and exhibits solution hydrodynamic behavior of a monomeric form

rather than the dimeric form of hMAO B and rat MAO A. hMAO A's active site consists of a single hydrophobic cavity of ~550 Å³ which is smaller than that determined from the structure of deprenyl-inhibited hMAO B (~700 Å³) but larger than that of rat MAO A (~450 Å³). An important component of the active site structure of hMAO A is the loop conformation of residues 210-216 which differs from that of hMAO B and of rat MAO A. The origin of this structural alteration is suggested to result as a consequence from long range interactions in the monomeric form of the enzyme. In addition to serving as a basis for the development of hMAO A specific inhibitors, these data support the proposal that hMAO A involves a change from dimeric to monomeric form through a Glu151Lys mutation that is specific of hMAO A (Hum. Genetics 115, 377-386, 2004). These considerations put into question the use of MAO A from non-human sources in drug development for use in humans.