<u>ESRF</u>	Two-dimensional x-ray waveguide gratings	number: 20-02-627
Beamline:	Date of experiment:	Date of report:
BM20	from: 03/09/05 to: 06/09/05	02/12/05
Shifts:	Local contact(s):	Received at ESRF:
21	N. Schell	
Names and affiliations of applicants (* indicates experimentalists):		
C. Ollinger*, C. Fuhse* and T. Salditt		
Institut für Röntgenphysik Friedrich-Hund-Platz 1, 37073, Göttingen, GERMANY Phone : (49) 551 39 9427 Fax : (49) 551 39 9430 Email : tsaldit@gwdg.de		

Report:

We have carried out measurements of the far-field pattern of two dimensional x-ray waveguides arranged on a lattice. These waveguide structures are prepared by spincoating a e-beam resist (e.g. Polymethylmethacrylate, PMMA) on a cleaned Silicon wafer. The resist is then structured in an e-beam lithography system (Lion LV1, Leica, Germany). After development of the structures a cladding material (here Silicon) is evaporated on top. As described in [1] these devices were recently used to produce a coherent and slightly divergent beam with a size of 25nm * 47nm at the exit of the waveguide.

Measurements of single two dimensional waveguides with a bending magnet beam are possible (see Figure 1, each peak corresponds to the illumination of a single two dimensional waveguide), but a detailed analysis of their properties is limited due the flux density at the entrance of such a waveguide. The photon energy was set to E = 12 keV with an integral flux of $5 * 10^5 photons/sec/mm^2$.

To overcome the demand of a high flux density at the entrance of such a two dimensional waveguide these structures can be arranged on a lattice with a period d_L . As described in [2] the field distribution behind such a structure is enveloped by the far field pattern of a single two dimensional waveguide (averaged over the lattice) and peaked at angles $\alpha_p = \arcsin \frac{n\lambda}{d_L}$. By changing the incidence angle α_I the center of the envelope of the far field pattern is shifted by $\alpha_{PC} = \alpha_I$ as is shown in figure 2:

A series of two dimensional CCD images of these waveguide lattice far fields were recorded. A typical pattern is shown in Figure 3. From these far field patterns it should be possible to reconstruct the E-field distribution at the exit of a single two dimensional waveguide and thus obtain information about efficiency of the optics. This work is currently in progress.

[1] A. Jarre et al. Physical Review Letters 94,(2005) 074801

[2] C. Ollinger et al. Physica B, 357 (2005) 53 - 56.