Beamline: ID31	Date of experiment: From: 14 Dec 2005 to: 16 Dec 2005	Date of report: 18 Sep 2006
Shifts: 6	Local contact(s): Dr Irene MARGIOLAKI	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

Adel MESBAH*

Anne CARTON*
Michel FRANCOIS*
*Laboratoire de Chimie du Solide Minéral UMR 7775, BP 239,Faculté des Sciences et Techniques, Vandoeuvre les Nancy, 54506 France

Report:

REPORT OF THE ESRF-CH1017 EXPERIMENT

1- INTRODUCTION

This experiment was a contribution to a program offering an environmentally friendly alternative to the zinc and magnesium protection conversion process. The project number CH 1017 , proposed to determine the crystallographic structures of the corrosion inhibitors with general formula $\mathrm{M}\left(\left(\mathrm{CnH}_{2 \mathrm{n}-1}\right) \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{x}}$ with n ≥ 10 (code MCn with $\mathrm{M}=\mathrm{Zn}, \mathrm{Mg}$) using ab-initio methods of resolution. We measured also same well structured mixing compound as $\mathrm{ZnCn}-\mathrm{ZnCn}$ '. Among the nine samples measured (see the table after), three new structures have been fully determined. Some results are presented in the following.

2- EXPERIMENTAL

X-ray powder diffraction data were collected by using the synchrotron radiation at the Europeen Synchrotron Radiation Facilities (ESRF), on the very high resolution powder diffractometer installed on the beam line ID31. A primary double crystal monochromator $\operatorname{Si}(111)$ is used for selecting the wave length. The detection is ensured by nine consecutive crystals $\mathrm{Ge}(111)$ analyser. The sample constituted of a fine powder is introduced in a Lindeman tube ($\Phi=1 \mathrm{~mm}$). The sample was contained in spinning on the axis of the diffractometer. The capillary was translated along the axis to give a fresh region of sample every 15 mn to avoid radiation damage. Data were recorded by using a wave length of $0.851243(4) \AA$, at 100 K with an interval of 0.003° and a total counting time of 2 h .

3- CRYSTALLOGRAPHIC RESULTS

3-1- Mixed compounds

$\mathbf{Z n}\left(\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{1 9}} \mathbf{O}_{\mathbf{2}}\right)\left(\mathbf{C}_{\mathbf{1 4}} \mathbf{H}_{\mathbf{2 7}} \mathbf{O}_{\mathbf{2}}\right)(\mathrm{ZnC10C14})$

The diffraction pattern of the mixed compound $\mathrm{ZnC10} \mathrm{C} 14$ could be indexed in a triclinic lattice P1 with the parameters: $\mathrm{a}=4.311$ (1) $\AA, \mathrm{b}=4.997(1) \AA, \mathrm{c}=28.999(1) \AA, \alpha=94.80(1)^{\circ}, \beta=93.16(1)^{\circ}=$ and $\gamma=$ $\left.64.57(1)^{\circ}\right)$. Rietveld refinement is presented on figure $1\left(\mathrm{Rp}=15.1, \mathrm{Rwp}=21.9\right.$, Chi2 $=26.8, \mathrm{R}_{\mathrm{B}}=14.8, \mathrm{R}_{\mathrm{F}}$ $=12.7$). Structural model showing the structure with adjacent $\mathrm{ZnC10}$ and $\mathrm{ZnC1} 4$ slabs is shown on Figure 1 . Atomic coordinates for $\mathrm{ZnC10C1} 4$ are reported in Table 1

Figure1 : Rietveld refinement for $\mathrm{Zn}(\mathrm{C} 10-\mathrm{C} 14)$

Figure 2: projection along [100] of the structure of $\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}\right)\left(\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{2}\right)$

Table1 : Final fractional coordinates for non-hydrogen atoms for $\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}\right)\left(\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{2}\right)$.

Atom	x	y	z
Zn1	-0.876	-0.306	-0.127
O11	-0.623	-0.297	-0.068
O12	-0.275	-0.297	-0.095
O21	-0.080	-0.043	-0.179
C12	-0.574	-0.644	-0.168
C12	-0.327	-0.320	-0.052
C13	-0.351	-0.204	-0.000
C14	-1.036	-0.407	0.028
C15	-1.112	-0.351	0.080
C16	-0.982	-0.652	0.103
C17 18	-1.141	-0.611	0.151
C18	-1.027	-0.911	0.173
C19 110	-1.049	-0.856	0.226
C21	0.178	-1.139	0.251
C22	0.005	-1.062	0.298
C23	-0.394	0.115	-0.196
C24	-0.539	-0.031	-0.235
C25	-0.281	-0.191	-0.275
C26	-0.495	-0.309	-0.308

C 27	0.042	0.414	-0.408
C 28	0.106	0.193	-0.453
C 29	-0.549	0.131	-0.473
C 210	0.447	-0.005	-0.527
C 211	0.822	-0.148	-0.546
C 212	0.819	0.721	-0.596
C 213	1.210	0.539	-0.604
C 214	1.232	0.431	-0.656

$\mathbf{Z n}\left(\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{1 9}} \mathbf{O}_{\mathbf{2}}\right)\left(\mathbf{C}_{\mathbf{1 6}} \mathbf{H}_{\mathbf{3 1}} \mathbf{O}_{\mathbf{2}}\right) \mathrm{Zn} \mathrm{C10} \mathrm{C16}$

The diffraction pattern of the mixed compound $\mathrm{ZnC10} \mathrm{C} 16$ could be indexed in a triclinic lattice P 1 with the parameters: $\mathrm{a}=4.762$ (1) $\AA, \mathrm{b}=4.779$ (1) $\AA, \mathrm{c}=30.960(2) \AA, \alpha=90.39(1)^{\circ}, \beta=85.81(1)^{\circ}=$ and $\gamma=$ $\left.70.88(1)^{\circ}\right)$. Rietveld refinement is presented on Figure $3\left(\mathrm{Rp}=14.5 \%\right.$, $\mathrm{Rwp}=21.7 \%$, Chi $2=28.9, \mathrm{R}_{\mathrm{B}}=$ $24.8, \mathrm{R}_{\mathrm{F}}=26.6$). Structural model showing the superstructure with adjacent $\mathrm{ZnC10}$ and $\mathrm{ZnC16}$ slabs is shown on figure 4 . Atomic coordinates for $\mathrm{ZnC10C16}$ are reported in Table 2

Figure 3 : Rietveld refinement for $\mathrm{Zn}(\mathrm{C} 10-\mathrm{C} 16)$

Figure 4: projection along [100] of the structure of

$$
\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}\right)\left(\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{2}\right)
$$

Table 2: Final fractional coordinates for non-hydrogen atoms for $\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}\right)\left(\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{2}\right)$.

Atom	x	y	y
Zn1	-0.199	-1.021	-0.649
O11	0.505	-1.135	-0.604
O12	0.067	-1.157	-0.603
C1	0.269	-1.124	-0.583
C2	0.227	-1.070	-0.534
C3	0.372	-1.362	-0.513
C4	0.319	-1.317	-0.464
C5	0.463	-1.609	-0.442
C6	0.410	-1.564	-0.393
C7	0.554	-1.857	-0.371
C8	0.501	-1.812	-0.322
C9	0.645	-2.104	-0.300
C10	0.592	-2.059	-0.251

O21	-0.262	-0.792	0.294
O22	-0.189	-0.314	0.311
C21	-0.155	-0.605	0.281
C22	-0.102	-0.619	0.232
C23	-0.154	-0.896	0.214
C24	-0.095	-0.919	0.165
C25	-0.146	-1.196	0.147
C26	-0.087	-1.219	0.098
C27	-0.139	-1.496	0.080
C28	-0.080	-1.519	0.031
C29	-0.132	-1.796	0.014
C210	-0.073	-1.819	-0.034
C211	-0.124	-2.095	-0.052
C212	-0.065	-2.118	-0.101
C213	-0.116	-2.395	-0.119
C214	-0.058	-2.418	-0.168
C215	-0.109	-2.695	-0.185
C216	-0.051	-2.718	-0.235

$\mathbf{M g}\left(\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{1 9}} \mathbf{0}_{\mathbf{2}}\right)_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{3}}(\mathrm{MgC10})$
Magnesium carboxylates contain water molecules. The structure of $\mathrm{Mg}\left(\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ determined from synchrotron data is similar to that of heptanoate equivalent. No evidence for existence of polytypes is observed. Rietveld refinement (see Figure 5) of the powder pattern leads to satisfactory R factors $\left(\mathrm{R}_{\mathrm{B}}=7.7 \%\right.$, $\mathrm{R}_{\mathrm{wp}}=6.3 \%, \chi^{2}=2.71$). The structure is presented in Figure 6. The magnesium atoms are in a octahedron constituted by three oxygen atoms coming from carboxylate groups and by three oxygen atoms coming from water molecules. The layer thus consists of two half-layers connected by hydrogen bonds.

Figure 5 : Affinement Rietveld de $\mathrm{MgC1} 0$ (groupe C2)

Figure 6: projection along [010] of the $\mathrm{Mg}\left(\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$.

Table 3: Final fractional coordinates for non-hydrogen atoms for $\mathrm{Mg}\left(\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$.

Atom	x	y	Z
Mg	$1.1316(4)$	$0.6529(4)$	$0.93603(11)$
O1	$1.0740(30)$	$0.9046(9)$	$0.9388(10)$
O2	$0.9850(2)$	$0.6570(30)$	$0.9814(6)$
O2	$1.2145(4)$	$0.6350(30)$	$1.00126(17)$
O1	$0.9455(16)$	$0.5901(10)$	$0.8934(7)$
O12	$0.8005(17)$	$0.8021(19)$	$0.9024(7)$
C11	$0.8500(30)$	$0.6970(30)$	$0.87885(14)$
C12	$0.8100(50)$	$0.7203(11)$	$0.83229(18)$
C13	$0.810(40)$	$0.5662(19)$	$0.8063(5)$
C14	$0.7180(30)$	$0.5810(4)$	$0.7634(3)$
C15	$0.7710(40)$	$0.4760(4)$	$0.7297(3)$
C16	$0.6860(40)$	$0.5080(5)$	$0.6872(3)$
C17	$0.7390(20)$	$0.4120(4)$	$0.6529(4)$
C18	$0.6300(30)$	$0.4100(4)$	$0.6129(6)$
C19	$0.6600(30)$	$0.2770(4)$	$0.5824(6)$
C110	$0.5550(30)$	$0.2780(5)$	$0.5408(6)$
O21	$0.6930(3)$	$0.1092(1)$	$0.9242(10)$
O22	$0.7870(2)$	$0.3587(1)$	$0.9324(7)$
C21	$0.7628(16)$	$0.2318(1)$	$0.9109(4)$
C22	$0.8761(12)$	$0.2160(4)$	$0.8811(2)$
C23	$0.8220(4)$	$0.2598(2)$	$0.83501(18)$
C24	$0.8450(4)$	$0.1220(3)$	$0.8043(4)$
C25	$0.7600(4)$	$0.1330(3)$	$0.7589(4)$
C26	$0.7990(3)$	$0.0020(4)$	$0.7280(6)$
C27	$0.6965(11)$	$-0.0120(6)$	$0.6855(3)$
C28	$0.7712(7)$	$-0.0610(5)$	$0.6476(4)$
C29	$0.6641(15)$	$-0.1100(5)$	$0.6082(7)$
C210	$0.7300(3)$	$-0.2170(4)$	$0.5769(9)$

4- CONCLUSION

At present time we have established structural models for the compounds $\mathrm{ZnC10C14}, \mathrm{ZnC10C16}$ and MgCl 10 . The indexation of the remaining pattern is in progress. Nevertheless, we have to emphasis that some patterns are relatively difficult to analyze. Indeed, some apparent 'pure' pattern can in fact be due to melt of polytypes with very narrow lattices. This is probably due to the various ways for stacking these lamellar structures. An other crucial problem in this kind of compound is the preferred orientation. It seems it remains relatively high although the facts the compound were measured in capillaries.
The results have been presented to EPDIC-10 in geneva (Suisse) [1] and to MATERIAUX-2006 in Dijon (France) [2].
[1] A. Mesbah, C Juers, M François, E. Rocca and J Steinmetz, "Magnesium And Zinc Long Aliphatic Chains Carboxylates", EPDIC-10, 1-4 septembre 2006, Genève
[2] A. Mesbah, C Juers, F. Lacouture, S. Mathieu, M. François, E. Rocca Et J. Steinmetz «Structures cristallines de carboxylates métalliques assurant la protection du zinc et du magnésium contre la corrosion, Matériaux 2006, 132-17 Novembre 2006, Dijon

