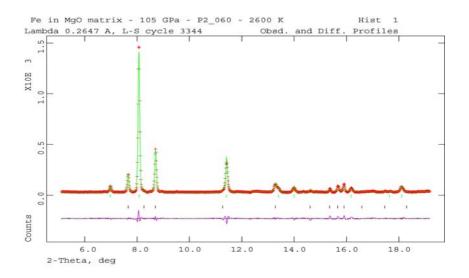


| <b>ESRF</b>                                                                                                                 | <b>Experiment title:</b><br>Thermal equation of state of epsilon-iron | Experiment<br>number:<br>HS2860    |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|--|--|--|--|
| Beamline:<br>ID27                                                                                                           | Date of experiment:   from: 06/04/2006 to: 11/04/2006                 | <b>Date of report</b> : 28/02/2007 |  |  |  |  |
| <b>Shifts:</b><br>15                                                                                                        | Local contact(s):<br>Nicolas Guignot                                  | Received at ESRF:                  |  |  |  |  |
| Names and affiliations of applicants (* indicates experimentalists):<br>Anne Line Auzende*, James Badro*, Guillaume Fiquet* |                                                                       |                                    |  |  |  |  |

Département de Minéralogie, IMPMC et IPGP, Université Paris 6, Université Paris 7, CNRS, Campus Boucicaut, 140 rue de Lourmel 75015 Paris

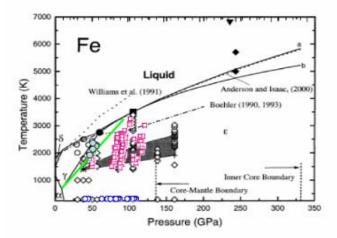
## Evgueni Gregoryanz\*

| School                                                            | of | Physics, | CSEC, | University | of | Edinburgh, |  |  |  |
|-------------------------------------------------------------------|----|----------|-------|------------|----|------------|--|--|--|
| Erskine Williamson Building, Mayfield Road, Edinburgh EH9 3JZ, UK |    |          |       |            |    |            |  |  |  |

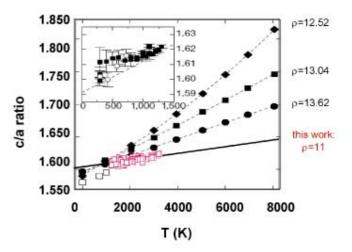

## **Report:**

The high-pressure, high-temperature behaviour of iron has been investigated to 140 GPa and 3500K by in situ synchrotron X-ray diffraction with double-side laser-heated diamond anvil cells at. We found that only  $\alpha$ -bcc,  $\gamma$ -fcc, and  $\epsilon$ -hcp Fe can be clearly verified as the stable solid phases in the explored *P*–*T* range.

A lot of care was taken for sample preparation, made of a mixture of pure polycrystalline MgO and fine grained iron. This mixture was first hot pressed for 24 hours in very reducing conditions, so as to obtain a dense starting material free from any iron oxides. This sample was then subsequently thinned down to 15  $\mu$ m and shaped into discs 30  $\mu$ m in diameter, and finally loaded in diamond-anvil cell devices under a dry neon atmosphere in a 2000 bar gas vessel.


Diamond-anvil cells were then aligned on the newly installed double-sided laser heating set-up available at ID27 beamline. At pressure exceeding 85 GPa,  $\varepsilon$ -Fe is observed to P-T conditions approaching those existing in outer core. No evidence could be found for any phase transition toward d-hcp structure as previously reported by Saxena et al. (1995) or to a Pbcm orthorhombic phase as proposed by Andrault et al (1997). The diffraction pattern shown in Figure 1 is a perfect illustration of the quality of the pattern we were able to collect over the whole pressure range. Such a diffraction pattern can unambiguously be interpreted as a mixture of MgO and hcp-iron. In addition, all samples were recovered and prepared for some analytical TEM study, that have shown no significant reaction between iron and the MgO matrix.

**Figure 1:** X-ray diffraction pattern collected at 105 GPa and 2600 K, at a wavelength of 0.26472 Å. Upper ticks denote MgO reflections whereas lower ticks correspond to hcp iron. A very small peak around a 2-theta angle of 9.3 corresponds to the most intense reflection for neon, quite weak at these extreme temperatures.




Within the P-T range examined, we did not observe a significant change with pressure or temperature on the c/a ratio of  $\varepsilon$ -Fe (see Figure 2). This observation is quite in disagreement with theoretical calculations of Steinle Neumann (2001), that reported a large variation of this ratio with increasing temperature at high pressure. Our observation casts a new light on the change of anisotropy proposed by this theoretical approach, since the large change in c/a ration was a key feature in these theoretical calculations.

In Figure 3, we report a phase diagram where the triple point  $\gamma$ - $\epsilon$ -liquid is accurately determined with the use of periclase as an internal pressure standard. Our results slightly differ from a recent study by Ma et al. (2004), where no internal pressure standard was employed. Our measurements yield the triple point at around 90 ± 3 GPa.



**Figure 2:** P-T data set and phase diagram, along results reported by Ma et al. (2004). At high-temperature, blue dots stand for fcc-iron, pink squares for hcp-iron. The main feature is that the triple point  $\gamma$ - $\epsilon$ -liquid is shown to be at higher pressures than previously reported.



**Figure 3:** evolution of the c/a ratio at high-temperature at different densities. Solid symbols are from Steinle-Neumann (2001). Our measurements show a very different evolution at high-temperature, which suggests the need for improved theoretical treatment of the elastic anisotropy of iron at high pressures and temperatures

Data analysis is almost completed now, and should provide a reliable P-V-T equation of state, as described in the original proposal.

Andrault et al., **Science**, 278, 831-834, 1997. Ma Y. et al., **Phys. Earth Planet. Int.**, 143-144, 455, 2004. Saxena et al., **Science**, 269, 1703, 1995. Steinle Neumann et al., **Nature**, 413, 57, 2001.