| <b>ESRF</b>         | <b>Experiment title:</b><br>XAS study on electron doped of Re-based double<br>perovskites. | Experiment<br>number:<br>HS-3077 |
|---------------------|--------------------------------------------------------------------------------------------|----------------------------------|
| Beamline:           | Date of experiment:                                                                        | Date of report:                  |
| BM29                | from: 15-JUNE-06 to: 18-JUNE-06                                                            | 25-09-07                         |
| <b>Shifts:</b><br>9 | Local contact(s):<br>Giuliana Aquilanti                                                    | Received at ESRF:                |

Names and affiliations of applicants (\* indicates experimentalists):

J. Blasco\*, J. García\*, G. Subías\*, Jan Marek Michalik\* and J. Herrero-Martín

Instituto de Ciencia de Materiales de Aragón, CSIC- Universidad de Zaragoza, Departamento de Física de la Materia Condensada, C/ Pedro Cerbuna 12, 50009 Zaragoza.

## **Report:**

There is much interest in the study of ferromagnetic oxides with a Curie temperature ( $T_C$ ) well above room temperature and with a high spin polarization of the conduction electrons. There are several members belonging to the so-called double perovskites (DP) family, namely Re- and Mo-based compounds, exhibiting a half-metallic ground state and a high  $T_C$ . Among them,  $Sr_2CrReO_6$  has one of the highest  $T_C$  and a large conductivity. One successful route to further increase  $T_C$  in Mo-based DP was via electron doping, i.e. partial substitution of Sr with rare-earth (Ln) in order to fill the 4*d* t<sub>2g</sub> minority spin band. In this work, we have studied the effects of the Sr replacement by different lanthanides in  $Sr_2CrReO_6$ . Our attempts at electron doping of  $Sr_2CrReO_6$  led to multiphasic systems. Single phases are only obtained with the stoichiometric formula  $Sr_{2-x}Ln_xCr_{1+x/2}Re_{1-x/2}O_6$ .

In order to determine the extent of doping, x-ray absorption spectroscopy has been used to independently determine the electronic structure and local geometry around both the Re and Cr atoms [1]. XANES and EXAFS spectra were recorded for  $Sr_{2-x}Nd_xCr_{1+x/2}Re_{1-x/2}O_6$  and  $Sr_{2-x}Sm_xCr_{1+x/2}Re_{1-x/2}O_6$  (x $\leq$ 0.5) series at Cr K and Re L edges at BM29 beam line. The measurements were carried out in transmission mode on powder samples at selected temperatures between 35 and 295 K. The beam was monochromatized by a fixed-exit Si(111) double crystal at both the Cr K- and the Re L<sub>1,2,3</sub>-edges. Harmonic rejection better than 10<sup>-5</sup> was achieved by using a Si mirror coating of the double flat mirror installed after the monochromator. A Cr foil and a pellet of metallic Re were simultaneously measured for energy calibration at each respective absorption edge.

The chemical shift of the Cr K-edge revealed the presence of  $Cr^{3+}$  ions for all compounds, although changes with increasing the rare-earth content are visible at the pre-edge features (see Figure 1, left panel). These changes suggest a change in the Cr-O-Re covalency of the samples with increasing Ln-content. On the other hand, the edge position of the Re L<sub>1</sub>-spectra agrees with the presence of Re<sup>5+</sup> in the same compounds, as shown in Figure 1 (right panel). Accordingly, we have tested the relationship between the area of the Re L<sub>2,3</sub> white lines and the unoccupied 5d electronic states. We have found a linear relationship at the L<sub>2</sub>-edge whereas the L<sub>3</sub>-edge seems to be less appropriate for this goal due to multiplet effects, as reported previously for 4d-systems. The inferred 5d occupation also agrees with the presence of Re<sup>5+</sup> for all compounds in agreement with the Re L<sub>1</sub>-edge results.



**Figure 1. Left panel**: Normalized Cr K-edge XANES spectra for metallic Cr (---), Cr<sub>2</sub>O<sub>3</sub> (----), LaCrO<sub>3</sub> (....), Sr<sub>2</sub>CrReO<sub>6</sub> (thick line) and CrO<sub>3</sub> (thin line). A and B denote pre-edge features at the Sr<sub>2</sub>CrReO<sub>6</sub> spectrum. Inset: Edge position for Sr<sub>2-x</sub>Nd<sub>x</sub>Cr<sub>1+x/2</sub>Re<sub>1-x/2</sub>O<sub>6</sub> (filled squares) and Sr<sub>2-x</sub>Sm<sub>x</sub>Cr<sub>1+x/2</sub>Re<sub>1-x/2</sub>O<sub>6</sub> (open squares) at 295 K. The filled and open symbols for x=0 correspond to the values at 35 and 295 K, respectively. **Right panel**: Normalized Re L<sub>1</sub>-edge XANES spectra for selected samples. Inset: Re L<sub>1</sub>-edge position for Sr<sub>2-x</sub>Nd<sub>x</sub>Cr<sub>1+x/2</sub>Re<sub>1-x/2</sub>O<sub>6</sub> (circles) and Sr<sub>2-x</sub>Sm<sub>x</sub>Cr<sub>1+x/2</sub>Re<sub>1-x/2</sub>O<sub>6</sub> (squares) series.

The EXAFS analysis gave Re-O and Cr-O bond-lengths, which do not vary with the doping ratio and concur with the expected values for  $\text{Re}^{5+}$  and  $\text{Cr}^{3+}$  oxides. Therefore, our spectroscopic study reveals the absence of change in the oxidation state of Cr and Re after the addition of Ln.

[1] J. Blasco, J. M. Michalik, J. García, G. Subías and J. M. De Teresa, Phys. Rev. B (2007), in press.