	Experiment title:	Experiment
ROBL-CRG	<i>In-situ</i> x-ray diffraction during sputter deposition of Ti-AI-N MAX-phase thin films	20_02_636
Beamline:	Date of experiment:	Date of report:
BM 20	from: 01.03.2006 to: 07.03.2006	11.11.2006
Shifts:	Local contact(s):	Received at ROBL:
18	Dr. Norbert Schell	28.11.06
Names and affiliations of applicants (* indicates experimentalists):		

*M. Beckers, Forschungszentrum Rossendorf, Germany

*C. Höglund, J. Birch, Linköping University, Sweden

*N. Schell, *R.M.S. Martins, ROBL-CRG, France

Report

AIM:

Due to their combination of metallic and ceramic properties, the $M_{n+1}AX_n$ phases – ternary nitrides and carbides with M being a transition metal, A an A group element and X nitrogen or carbon – are subject of numerous studies. Also thin films of the $M_{n+1}AX_n$ carbides have been extensively studied, but only very recently the first results on nitride deposition in form of Ti_2AlN have been published [1, 2; compare Reports 20_02_608, part III + IV]. However, for Ti_4AlN_3 and the proposed meta-stable modification Ti_3AlN_2 , no experimental work on thin films has been reported up to now. Hence, during this experiment the growth of $Ti_{n+1}AlN_n M_{n+1}AX_n$ phase compounds with n = 2 and 3 was studied *in-situ*.

EXPERIMENTAL:

A total of nine samples were deposited onto single crystal MgO(111) and Al₂O₃(0001) substrates by reactive magnetron co-sputtering from Ti and Al targets in an Ar/N₂ atmosphere at temperatures between 600 and 725°C. According to previous experiments [3] the Ti₄AlN₃ deposition parameters were set to target powers of Ti 83 W and Al 14 W with Ar/N₂ flux ratios of 7.82/0.6 sccm, leading to a working pressure of 0.8 Pa. Thin (Ti_{0.63}Al_{0.37})N or Ti₂AlN were used as seed layers, in order to improve Ti₄AlN₃ nucleation and prevent interfacial diffusion processes to the MgO substrate. A constant bias voltage of -30 V was applied for all depositions. Each sequential deposition step of seed layer and Ti₄AlN₃ was characterized in two different scattering geometries: (1) low angle specular reflectivity for thickness determination and (2) large angle x-ray diffraction (XRD) to determine phase formation and off-plane lattice parameters. The energy of the incident x-rays was monochromatized to 11.554 keV ($\lambda = 1.073$ Å). Additional ex-situ techniques used were Rutherford backscattering spectrometry (RBS) to obtain the final film composition and high resolution transmission electron microscopy (HRTEM) to cross-check for local M_{n+1}AX_n phase formation.

RESULTS

Fig. 1 shows the XRD results for samples deposited onto Al_2O_3 at 600°C, 675°C, and 725°C substrate surface temperature. For 725°C and 625°C, prior to the Ti₄AlN₃, a thin Ti₂AlN seed layer was deposited at 675°C, showing basal plane growth as displayed by the multiple (000 ℓ) diffraction peaks (see also [1]). Similar results as in Figure 1 have been obtained for Ti₄AlN₃ growth onto MgO(111) and/or using (Ti_{0.63}Al_{0.37})N as a seed layer. For 675°C substrate temperature, as depicted in Figure 1(a), the deposition of 700 Å nominal Ti₄AlN₃ does not induce this phase, but an Ti₂AlN growth with segregation of surplus Ti into cubic (Ti_{1-x}Al_x)N with unknown Al concentration. This may be ascribed to an insufficient Al adatom mobility, which consistent

Fig. 1: *In-situ* XRD of nominal Ti₄AlN₃ deposition at different temperatures

Energy (keV) 400 600 800 1000 1200 3000 "413" / "211" / Al₂O₃(0001), T_S = 725 °C 0 472*10¹⁵ #/cm² Ti₅₄Al₁N₃₁O₁₄ 2500 Ν 2000 RBS yield (cts.) 1500 Ti Al_{Subs} 1000 Experimental conditions 500 ti₂ain" Inc. angle = 20°, Scatt. angle = 170° E = 15.30 keV + 1.7479 keV/ch $E_0 = 1.8 \text{ MeV}, ~40 \mu C @ 30 nA, \Omega = 1.41 \text{ mstr}$ 400 200 300 500 600 Channel

Fig. 2: *Ex-situ* RBS of nominal Ti₄AlN₃ deposited at 725°C, showing Al loss

Fig. 3: *Ex-situ* HR-TEM micrograph of nominal Ti₄AlN₃ deposited at 600°C

with [2] should be overcome by higher temperature. However, when heating to 725°C the previously deposited Ti_2AIN shows first traces of decomposition, as depicted in Fig. 1(b). Accordingly, nominal Ti_4AIN_3 deposition induces nucleation of a very low-mosaicity TiN, with no Al incorporation at all, as proven by ex-situ RBS shown in Fig. 2. Hence, the Al seems to act as a surfactant for TiN growth before desorption from the growth surface and evaporation into the vacuum. When depositing the nominal Ti_4AIN_3 at 600°C, the stoichiometry as proven by RBS (not shown here) is 4Ti:Al:3N, and the XRD shows peaks that may be attributed to a tilted Ti_4AIN_3 growth, as observed also for diffusion-limited Ti_2AIN growth [1]. However, the HRTEM results depicted in Fig. 3 reveal hillocks and two competing alledged basal plane orientations with no evidence of a disctinct Ti_4AIN_3 phase, but a irregularly twinned structure stil that needs further investigations. **REFERENCES**

[1]: M. Beckers, N. Schell, et al.: Journal of Applied Physics 99, 34902 (2006).

[2]: M. Beckers, N. Schell, et al.: Applied physics letters 89, 074101 (2006).