ESRF	EXAFS on Nb-doped magnesium and magnesium hydride: how the Nb-Mg correlation acts on the hydrogen absorption/desorption process.				e number :
Beamline:	Date of experiment:				Date of report:
	from:	25-4-2007	to:	30-4-2007	
Shifts:	Local contact(s):				Received at ESRF:

Experiment

Names and affiliations of applicants (* indicates experimentalists):

C. Maurizio (GILDA beamline, ESRF)

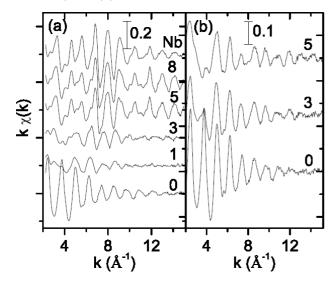
C. Maurizio

Experiment title:

R. Checchetto (Trento University, Italy)

Report:

Nb-doped Mg samples (Nb concentration = 1 at.% and 3 at.%) were deposited by r.f. magnetron sputtering in form of films on polished graphite wafers. To prevent the surface oxidation and stimulate the H₂ dissociation at the Mg surface, samples were coated with a 15-nm-thick Pd capping layer without interrupting the vacuum conditions in the deposition chamber. After deposition, Mg samples peeled off from the substrate: the self-supporting samples were introduced in a Sievert-type apparatus to study the hydrogen sorption kinetics. Samples were submitted to several H₂ sorption cycles at 623 K, each one consisting of two steps: i) the sample is exposed to 1 MPa H₂ gas for 20 h to induce the H₂ absorption (absorption step) and then ii) to vacuum to induce H₂ desorption (desorption step). The EXAFS experiment was performed at the Italian beamline GILDA of the ESRF (F) on Nb K-edge. The monochromator was equipped with two Si (311) crystals and a couple of Pt-coated mirrors working at an incidence angle of 2.7 mrad were used to reject higher harmonics. Nb EXAFS spectra were collected in fluorescence mode by a 13-elements high-purity Ge detector; samples were cooled at 80 K to limit thermal vibrations; The spectrum of a Nb foil was also Measured in transmission mode as standard reference. Data analysis was based on FEFF8-FEFFIT code.


The EXAFS spectra of the 3 and 1 at. % Nb-doped Mg films measured after H₂ desorption are shown in the figure: spectra are pertinent to the as-deposited layer and to layers submitted to 1, 3, 5 and 8 H₂-cycles. The spectrum of the as-deposited film changes upon consecutive H₂-cycles and becomes progressively similar (after 5 and 8 cycles) to that of metallic Nb. This fact is more evident for Nb(3%):Mg film than for the Nb(1%):Mg one, suggesting a slower Nb aggregation at low Nb concentration.

The results of the EXAFS analysis indicates that:

- in the first hydrogenation/dehydrogenation cycles, small non-bcc Nb clusters form, while part of Nb is bonded to Mg atoms; the fraction of metallic Nb and dispersed fraction depends on the Nb concentration.
- after many (about 10) cycles all Nb is in form of bcc clusters.

These results shed light on the rapid hydrogen kinetics observed during the first cycles; a paper is in preparation.

EXAFS spectra on Nb-doped Mg layers after subsequent hydrogenation/dehydrogenation cycles (the cycle number is indicated): (a) Nb concentration = 3 at%, (b) Nb concentration = 1 at. %.

