ESRF	Experiment title: Characterization of the crucial S ₄ state of photosynthetic O ₂ evolution: Stabilization in time-resolved X-ray experiments by H/D-isotope and pH changes	Experiment number: SC2258
Beamline : ID26	Date of experiment: from: 24.04.2007 to: 01.05.2007	Date of report : 27.08.2007
Shifts: 21	Local contact(s): Dr. Tsu-Chien Weng	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists): *Dr. Michael Haumann, Freie Universität Berlin, Physik, Arnimallee 14, D-14195 Berlin, Germany, Prof. Dr. Holger Dau, Freie Universität Berlin, Physik, Arnimallee 14, D-14195 Berlin, Germany, *Oliver Sanganas, Freie Universität Berlin, Physik, Arnimallee 14, D-14195 Berlin, Germany		

Report: Water oxidizing photosynthesis producing dioxygen is a key reaction sustaining life on earth. In the future, light-driven water oxidation may be coupled to H₂-production by hydrogenases for fuel production. O₂ formation proceds at the manganese complex of photosystem II (PSII) in a complex reaction cycle involving a series of intermediates (S-states). We have established the existence of an intermediate, S₄, in the crucial O₂-evolving reaction step $S_3 \rightarrow S_0 + O_2$ [1-4]. (1) The properties of the S₄ state were scrutinized in time-resolved X-ray experiments at the Mn K-edge using laser flash excitation of PSII samples in the X-ray beam. The lifetime of the intermediate was extended by varying the sample pH and using the replacement of H₂O by D₂O. Most interestingly, the experiments provided evidence for a further intermediate in the Mn-oxidizing S₂ \rightarrow S₃ transition that needs to be further characterized. These observations strongly support our extended reaction cycle of photosynthetic water oxidation [2,4]. (2) Preliminary Resonant Inelastic X-ray Scattering (RIXS) experiments were performed on Ni-Fe hydrogenases and model compounds. RIXS on biological metal centers is feasible at ID26 and will be used in 2008 to study the Mn complex of PSII.

Results: Multilayer samples of PSII were prepared in H₂O at pH 6.3 and in D₂O at pD values of 5.8 and 6.8. The rationale was to kinetically label those reactions coupled to protolysis in the water oxidation cycle and to extend the lifetime of intermediates. Figure 1 shows X-ray transients in H₂O and D₂O on the four transitions between the semistable S-states. (1) The ratio of the rates k_H/k_D of Mn oxidation on transitions $S_0 \rightarrow S_1$ and $S_0 \rightarrow S_1$ is close to one. These reactions apparently are not coupled to proton release. (2) There is a pronounced isotope effect on the $S_2 \rightarrow S_3$ and $S_3 \rightarrow S_4 \rightarrow S_0$ transition where O_2 is produced. (3) The lag phase attributable to S₄ formation is prolonged by a factor of ~ 2 in D₂O. (4) In D₂O, there is evidence for a lag phase in the X-ray transient also in the $S_2 \rightarrow S_3$ transition which has not previously been observed (Fig. 2). This lag is the first experimental evidence for an intermediate also in this Mn oxidizing reaction step. (5) At a higher pD the rates of Mn oxidation/reduction and of intermediate formation were similar to those in H₂O, as expected for the compensation of H/D and pH effects.

Fig. 1: Kinetic X-ray transients in H_2O (blue) and D_2O (red). Smooth lines = fit curves. About 1500 transients were averaged per trace; time resolution = 10 µs per data point.

Fig. 2: Left: Kinetic X-ray transient on the $S_2 \rightarrow S_3$ transition; red = simlation using two consecutive reactions, blue = single exponential fit, bottom = residual plots. Right: Comparison of lag-phase behavior (dashes) on the O₂-evolving step (bottom) and on S₂ \rightarrow S₃ (top).

The H/D and pH effects reveal: (1) The fornation of the S_4 state is coupled to a deprotonation at the Mn complex and not to Mn oxidation. This deprotonation may be crucial for subsequent O_2 formation [**]. (2) The first observation of a lag in the S_2 - S_3 transition, particularly in D_2O , may point to a crucial deprotonation reaction also in this step. It is highly important to characterize the nature of this state in further time-resolved X-ray experiments. The preliminary evidence for an intermediate in the S_2 - S_3 step may bring us closer to the characterization of all of the at least eight states [2] in the reaction cycle of water oxidation.

Preliminary RIXS experiments at the Ni K-edge were performed on 5 different Ni-Fe hydrogenases and on model compounds (obtained from Profs. B. Friedrich, M. Driess, C. Limberg (all Berlin) and A. DeLacey, Madrid) on the single-crystal spectrometer at ID26 (Fig. 3). We are grateful for additional in-house beamtime. RIXS on ultra-dilute (1 mM metal) biological samples is feasible. Radiation damage can be minimized; the signal-to-noise ratio is reasonable. Mn RIXS measurements are planned in February 2008.

Fig. 3: RIXS planes at the Ni $K_{\alpha 1}$ emission line for two Ni-Fe hydrogenase samples (left, *Desulfovibrio gigas*; right, membrane-bound hydrogenase of *Ralstonia eutropha*). Ten RIXS scans of ~10 min duration were averaged. Proteins were in the hydrogen-reduced state.

Conclusions: We consider the April run as particularly successful. Valuable new information on intermediates in the O_2 -evolving reaction cycle of water oxidation has been obtained which supports our hypothesis of the involvement of crucial deprotonation reactions at the Mn complex [1-4]. The results on the O_2 -evolving step are part of a manuscript in preparation. For the first time, preliminary evidence for a further intermediate in the S_2 - S_3 transition became visible. It is highly important to characterize this intermediate in future time-resolved X-ray experiments.

Preliminary RIXS data have been collected at the Ni K-edge and the feasibility of RIXS on biological samples at ID26 was established. These challenging experiments are expected to provide high-resolution information on the atomic structure and also on the electronic configuration of metal sites in the future.

References

- M. Haumann, C. Müller, P. Liebisch, M. Barra, M. Grabolle, H. Dau, Photosynthetic O₂ formation tracked by time-resolved X-ray experiments. *Science* **310**, 1019-1021 (2005).
- [2] H. Dau, M. Haumann, Eight Steps preceding O-O bond formation in oxygenic photosynthesis- A basic reaction cycle of the photosystem II manganese complex. *Biochim. Biophys. Acta* 1767, 472-483 (2007).
- [3] H. Dau, M. Haumann, Time-resolved X-ray spectroscopy leads to an extension of the classical S-state cycle model of photosynthetic oxygen evolution. *Photosynth. Res.* **92**, 327-343 (2007).
- [4] H. Dau, M. Haumann, Coord. Chem. Rev., accepted for publication (2007).