ESRF	Experiment title: The influence of oxygen sharing on \underline{S} and \underline{Fe} <i>K</i> -edge XANES spectra from hydrated iron sulphate minerals	Experiment number: EC 209							
Beamline: ID-21	Date of experiment:from:2 November 2007to:6 November 2007	Date of report : 2008.02.14							
Shifts: 12	Local contact(s): Dr. Vincent de Andrade	Received at ESRF:							
Names and affiliations of applicants (* indicates experimentalists)									

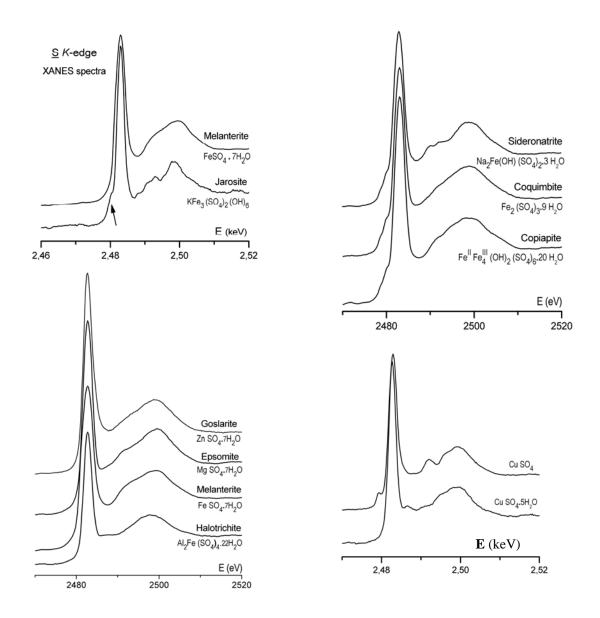
Names and affiliations of applicants (* indicates experimentalists):

*M.O. Figueiredo, *J.P. Veiga, *T.P. Silva, INET/IGM, Geological Survey, 2721-866 Alfragide & CENIMAT, Mater. Sci. Dept., Fac. Sci. Technology, New University of Lisbon, 2829-516 Caparica, Portugal

*D. Rosa, INET/IGM, Geological Survey, Estrada da Portela, 2721-866 Alfragide

Report:

Sulphates are quite common minerals. Amongst them, hydrated secondary iron sulphates may configure a serious environmental concern as alteration materials in acid mine drainage areas of polymetallic sulphide ores exploitations. These sulphates display a great variety of structural arrangements, always containing non-polymerized (isolated) tetrahedral sulphate ions [S^t O₄] and metal cations in octahedral coordination by hydroxyls plus water molecules (beyond the oxygen atoms shared with sulphate anions). The sharing of oxygen anions with cation octahedra, [M^oX₆] (X = O, OH, H₂O), may differ significantly (table below).


[M ° X ₆]					[S ^t O ₄]							
$[M^{o}(H_{2}O)_{6}]/[Cu^{sq}(H_{2}O)_{4}]$	[Fe ^o O (H ₂ O) ₅]	$[Fe \circ O_3 (H_2 O)_3]$	$[Fe^{\circ} O_3 (OH) (H_2 O)_2]$	[Fe ^o O ₂ (OH) ₄]	$[~Fe^{\circ}~O_6~]/[Cu^{sq}~O_4]$	$\left[{\left[{\left. {{S}^{t}} \right.{O_4}} \right]} ight]$ isolated tetrahedra	[S ^t O ₃ <u>O</u>]	$[S^{t} O_{2} \underline{O}_{2}]$	$[S^{t} O \underline{O}_{3}]$	$1 (H_2O)$ isolated water molecules	Sulphate Minerals Number of identical polyhedra configuring the coordination environment of metals & sulphur Mineral name Chemical formula	
				3					2	0	JAROSITE	K Fe ₃ (OH) ₆ (SO ₄) ₂
				1				2		3*	SIDERONATRITE	Na ₂ Fe (OH) (SO ₄) ₂ . 3 H ₂ O
1			4					6		6	COPIAPITE	Fe ^{III} Fe ^{III} ₄ (OH) ₂ (SO ₄) ₆ .20H ₂ O
1		2			1			6		6	COQUIMBITE	Fe ₂ (SO ₄) ₃ .9H ₂ O
2	1					3	1#			5	HALOTRICHITE	Al ₂ Fe (SO ₄) ₄ . 22 H ₂ O
1						1				1	MELANTERITE EPSOMITE GOSLARITE	$ \begin{array}{c} M = Fe \\ M = Mg \\ M = Zn \end{array} $
1								1		1	CHALCANTHITE	Cu S O ₄ .5H ₂ O
					1				1	0	CHALCOCYANITE	CuSO4

M = metallic ion (Fe, Al, Mg, Zn). Cation coordination: \underline{o} , octahedral; \underline{sq} , square; \underline{t} , tetrahedral.

* water molecules coordinating only sodium ions; # oxygen sharing with iron octahedron.

The aim of the experiment was to assess the influence of oxygen-sharing on the near-edge details of \underline{S} 1s absorption spectra, complementing data collected in a previous experiment for iron (EC 87). XANES spectra were collected in fluorescence yield (FY) and total electron yield (TEY) modes (Fe K-edge, 7.05-7.35 keV; \underline{S} K-edge, 2.44 to 2.56 keV). Small mineral fragments were irradiated at various points and ten scans were performed per point. From a total of about 1400 registered scans, 110 good sum spectra were obtained. Distinct anion sharing degrees imply a lowering of the formal sulphur oxidation state, explaining details preceding the characteristic white line (figures below). A paper reporting and discussing the results so far obtained is already in press [1] and two communications were submitted and accepted for presentation [2,3].

A preliminary approach to the study of $\underline{In} L_3$ absorption edge (3.72-3.80 keV) in sulphides was attempted.

[1] M.O. FIGUEIREDO & T. P. SILVA. The electronic state of sulphur in mineral sulphates: effect of oxygen sharing on the white line of <u>S</u> K-edge XANES spectrum. *European J. Mineralogy* (in press).

[2] M.O. FIGUEIREDO, T. PEREIRA da SILVA & J.P. VEIGA. Oxidation state and coordination of iron in red pre-soils: first results from a <u>Fe</u> K-edge XANES study on regoliths from Santiago Island, Cape Verde. EGU 2008, Europ. Geosciences Union Gen. Assembly, Session SSS14, Vienna/Austria, April 13-18, 2008 (poster).
[3] M.O. FIGUEIREDO, T. PEREIRA da SILVA, J.P. VEIGA, C. LEAL GOMES & V. de ANDRADE. The blue colouring of beryls from Licungo, Mozambique: an X-ray absorption spectroscopy study at the iron K-edge. ICAM 2008, 9th Internat. Congr. Applied Mineralogy, Brisbane/Australia, 8-10 September, 2008 (poster).