SN BL	Experiment title: Phase transitions in magnesium borohydride.	Experiment number: 01-02-805
Beamline:	Date of experiment:	Date of report:
BM01A	from: 5-July-08 to: 8-July-08	26-Feb-09
Shifts:	Local contact(s):	Received:
6	Yaroslav FILINCHUK	
 *Yaroslav Filinchuk² Hans Hagemann³ Klaus Yvon¹ ¹Laboratory of Crystallography, University of Geneva ²SNBL, ESRF Grenoble ³Physical Chemistry, University of Geneva 		
but the first in the first in the first interval of the first int		

Single crystal diffraction:

A crystal of ~50 μ m size has been selected from the powder sample which was annealed for one week under 1 bar of argon at 453 K. The crystal was selected under protective layer of oil and rapidly transferred to a 100 K nitrogen stream. Diffraction data were taken at 100 K using the MAR345 Image Plate detector, at the wavelength 0.770294 Å and the crystal-to-detector distance of 150 mm. 219 frames with 1° rotation and 10 sec exposure time have been collected.

The structure of the low-temperature α -phase, originally reported by two independent groups in the space group $P6_1$ [2, 3], is revised in the space group $P6_122$, using 100 K single-crystal diffraction data. The revision supports the suggestion made in the DFT study [4] of the $P6_1$ structure. Analysis of the published $P6_1$ models shows that location of the H-atoms from powder data posed the main problem for the identification of the correct symmetry: wrongly determined orientations of some BH₄ groups hampered a successful detection of the true $P6_122$ symmetry by automatic algorithms. On the other hand, the restrained refinement in $P6_122$, using our new high-resolution powder data, allows to approach the accuracy of the single-crystal study.

Experimentally determined B-H distances are statistically identical, displaying the 1.142 Å mean over 20 independent bond lengths. The BH₄ groups are coordinated by Mg atoms via the two opposite edges, but the Mg-H₂BH₂-Mg fragments are not strictly linear – the Mg-B-Mg angles range from 148 to 170°. H-B-H angles in the Mg-H₂B fragments are in average by 2° more open than for the non-coordinated ones. A detectable distortion of the tetrahedral BH₄ groups can be attributed to the strong polarizing effect of the Mg²⁺ cation or to a partially covalent Mg-BH₄ interaction.

The dodecahedral MgH₈ coordination of the three independent Mg atoms in α -Mg(BH₄)₂ can be described as a slightly distorted snub disphenoid. Four BH₄ groups around each Mg can be grouped in two pairs, each forming a nearly planar BH₂-Mg-H₂B fragment, with the two fragments forming ~90° dihedral angle. The shortest H...H distances between the BH₄ groups (2.18-2.28 Å) appear within these BH₂-Mg-H₂B fragments. All other intermolecular H...H contacts in α -Mg(BH₄)₂ are longer than 2.47 Å, but typically range from 2.7 to 2.9 Å. The single-crystal study gives a narrow, 1.92-2.16 Å, range of Mg-H distances, which is only slightly broader than the theoretical 2.00-2.13 Å range.

We found that α -Mg(BH₄)₂ contains an unoccupied void, overlooked in the previously reported *P*6₁ models, accounting for 6.4% of space in the structure. It is large enough (37 Å³) to accommodate a small molecule, like H₂O. The void forms an infinite channel along 00z direction, which may provide a path for hydrogen diffusion during initial stages of hydrogen desorption. It is remarkable that by ~3% less dense high-temperature β -phase contains no unoccupied voids.

A smooth variation of the cell parameters for the α -phase indicates that there is no hypothetical transition from the $P6_122$ structure to $P6_1$ or vice versa, and therefore the structure revision for the hexagonal phase is valid at all temperatures.

The results have been published in ref. [5].

Other samples were also studied by in-situ powder diffraction : $ZnCl_2 + 2LiBH_4$

Sample from Geneva, prepared by ball milling, temperature ramp 100-500 K.

The measurement was then completed by the data measured in Dec 2008 within the project no. 01-02-834. The results are being prepared for publication.

Chłopek, K.; Frommen, Ch.; Léon, A.; Zabara, O.; Fichtner, M. J. Mater. Chem. 2007, 17, 3496-3503.
 Cerny, R.; Filinchuk, Y.; Hagemann, H.; Yvon, K. Angew. Chem. Int. Ed. 2007, 46, 5765-5767.
 Her, J.-H.; Stephens, P. W.; Gao, Y.; Soloveichik, G. L.; Rijssenbeek, J.; Andrus, M.; Zhao, J.-C. Acta Crystallogr. B 2007, 63, 561-568.
 Dai, B.; Sholl, D. S.; Johnson, J. K. J. Phys. Chem. C 2008, 112, 4391-4395.

[5] Filinchuk, Y.; Černý, R.; Hagemann H.; Chem. Mat. 2009, in press. DOI: 10.1021/cm803019e