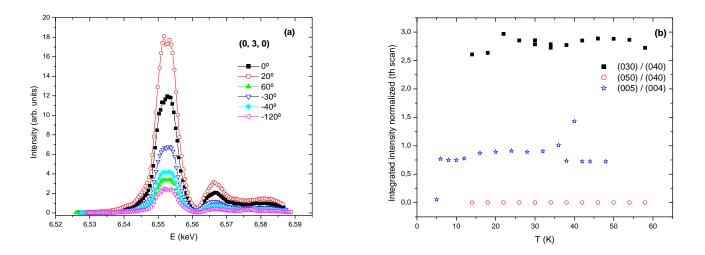
ESRF	Experiment title: Study of the TbMnO ₃ local distortions by x-ray resonant scattering at the Mn K-edge and Tb L ₃ -edge	Experiment number: HE 2761
Beamline: ID 20	Date of experiment:from:May 13, 2008to:May 20, 2008	Date of report : 1/09/08
Shifts: 18	Local contact(s): Javier Herrero-Martín	Received at ESRF:

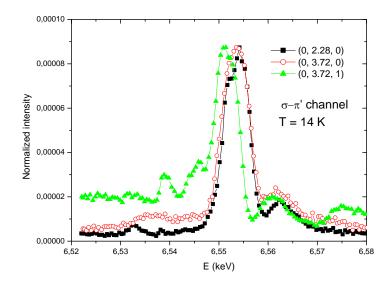
Names and affiliations of applicants (* indicates experimentalists):

Dr. Joaquín García*, Dra. Gloria Subías*, Dr. Javier Blasco* and Vera Cuartero*


Instituto de Ciencia de Materiales de Aragón, CSIC - Univ. de Zaragoza, Zaragoza (Spain).

Report:

TbMnO₃ perovskite is the representative of materials where antiferromagnetism (AFM) and ferroelectricity coexist at low temperatures. Neutron diffraction experiments have shown that Mn³⁺ magnetic moments go through an incommensurate AFM sine order below 40 K, described by a wave vector $\mathbf{k}_{Mn} = (0, 0.29, 0)$ in the ortorrombic unit cell *Pbnm*. The \mathbf{k}_{Mn} vector decreases with temperature down to a *quench* at $\mathbf{k}_{Mn} = (0, 0.28, 0)$ with a T_{quenching} ~ 28K. At this temperature a magnetization component caused by Mn sublattice along **c** axis is developed. TbMnO₃ shows then a ferroelectric order at T_C ~ T_{quenching} ~ 28K. [1] In this phase, the Tb moments also order with the same wave vector as the Mn, but they are transversally polarized along the **a** axis. [2] Moreover, below 7 K there is an AFM order of Tb³⁺ magnetic moments, showing a magnetization component along **a** axis, with a wave vector $\mathbf{k}_{Tb} = (0, 0.415, 0)$. However, the microscopic origin of the magnetically induced ferroelectricity is still unknown.


A resonant x-ray scattering study at the Mn K-edge and Tb L₃-edge of TbMnO₃ was performed to investigate the local distortions responsible for the ferroelectricity. Forbidden reflections (0 k 0), (0 0 1) with k, l = 3, 5 were measured in single-crystals cut with [010] and [001] surfaces normal at room temperature. The dependence of the intensity for these reflections on temperature and azimuthal angle was investigated in detail. A Cu (220) crystal was used to analyze the polarization of the scattered beam: perpendicular (σ) or parallel (π) to the scattering plane. We also observed some incommensurate reflections of the type: (0, 2+q_{Mn}, 0), (0, 4-q_{Mn}, 1) in both edges and (0, 3-q_{Mn}, 0), (0, 1-q_{Mn}, 3) and (0, ±q_{Mn}, 3) reflections only in Tb L₃ edge, being q_{Mn} =0.28.

We can see in figure 1 (a) the intensity of (030) forbidden reflection as a function of the photon energy at different azimuthal angles in the σ - π ' channel, at room temperature. A strong resonance is observed at 6552 eV, just at the Mn K-absorption edge. Scattering intensity is only observed in the σ - π ' polarization channel for all forbidden reflections studied and when the crystal is rotated around its scattering vector, the σ - π ' intensity of these reflections show a $\cos^2\phi$ dependence. There is a $\pi/2$ periodicity of the resonant intensity on the azimuthal angle ϕ for (0,k,0) and (0,0,1) reflections. We have also measured the temperature evolution so that in figure 1 (b) we can see the integrated intensity of the forbidden reflections evolving with temperature. Here, we could not find any significant intensity variation either around the Nèel temperature, $T_N \sim 40$ K, or at $T_C \sim 28$ K.

Figure 1. (a) Energy dependence of the forbidden (0, 3, 0) reflection measured at different azimuth angles, in the $\sigma \rightarrow \pi$ ' channel at the Mn K absorption edge. (b) Integrated intensity of the (0k0) and (001) (θ scan) of forbidden reflections as a function of temperature.

On the other hand, figure 2 shows the energy dependence of the observed incommensurate reflections in the σ - π ' channel at the Mn K edge. It is worth noting that the resonance observed at the (0, 4-q_{Mn}, 1) reflection is slightly shifted to lower energies with respect to the (0, 2+q_{Mn}, 0) and (0, 4-q_{Mn}, 0) reflections. This indicates that the resonant signal at these (0, 2+q_{Mn}, 0) and (0, 4-q_{Mn}, 0) reflections could have a different origin, taking into account that the (0, 4-q_{Mn}, 1) reflection has the hallmarks of a resonant x-ray magnetic scattering (A-type AFM).

Figure 2. Energy dependence of the incommensurate reflections, polarization-resolved ($\sigma \rightarrow \pi$ ') at the Mn K absorption edge at T= 14 K. The first two are normalized to the maximum of intensity of the third.

Finally, the behavior of the studied forbidden reflections closely resembles to LaMnO₃ [3], which suggests that in this case they are also originated by anisotropic tensor scattering.

- [1] S. Quezel et al. Physica B+C 86-88, (1977), 916-918
- [2] M. Kenzelmann et al. Phys. Rev. Lett. 95, 087206 (2005).
- [3] G. Subías et al. Phys. Rev. B 75, 235101 (2007)