ROBL-CRG	Experir The infl <i>in-situ</i> g	Experiment number: 20-02-667				
Beamline : BM20	Date of from:	experiment : 16.07.2008	to:	23.07.2008	Date of report: 08.12.2008	
Shifts: 15	Local co Dr. N. J	ontact(s): eutter			Received at ESRF:	
Names and affiliations of applicants (* indicates experimentalists):						

M. Zschintzsch*, N. Jeutter*, J. von Borany*

Institute of Ion Beam Physics and Materials Research, FZD, Dresden, Germany

Report:

The fabrication of Ge-NC's by decomposition of GeO_x (0<x<2) out of a (GeO_x-SiO₂) superlattice structure (SL) has been studied *in-situ* sputtering chamber at ROBL. The SL of (GeO_x/SiO₂)^{19x} were grown by dual reactive DC magnetron sputtering from elemental targets. Different Ge/O ratios in the SL structures were realized by the variation of deposition temperature.

Fig. 1: XRR scans of a SL structure deposited at RT (period thickness 9.64 nm) recorded during subsequent annealing steps.

The X-ray reflectivity (XRR) curves, of the deposition at room temperature and at 200°C respectively, show clearly highly orderered SL structures. For the RT deposition one can observe a split of the superlattice peaks at the 3^{rd} , 4^{th} and 5^{th} order. This indicates a slight variation off less then > 0.5nm for the period thickness of the multilayer. For samples with a deposition temperature of 200°C only a little split at the 4^{th} order can be seen. Therefore the variarity in thickness can be taken as negligible small. The simulation of the XRR curves reveal smoother interfaces for the SL

deposited at 200°C compared to RT deposition (roughness σ = 1.0 / 0.6 nm for T_D = RT / 200°C, resp.)

The diffrence of the two samples becomes more significant when the samples are post-annealed. Samples deposited at RT clearly show a degrading of the SL structure with every annealing step [Fig. 1], indicated by less and less observed SL peaks. Samples grown at $T = 200^{\circ}C$ do not show this degradation [Fig. 2]. Furthermore a little improvement of the SL structure can be observed during the annealing step to 540°C which is kept also at 600°C.

The crystalisation process of the Ge particles was monitored with grazing incidence X-ray diffraction as a function of annealing temperature. For both depostion temperatures the post-annealing of the SL structures is leading to the growth of Ge NC's at about 540-550°C [Fig. 3a, b]. Hereby one can derive the temperature 540°C as the necessary crystal formation temperature. This result corresponds with the results of M. Zacharias et al. [1] for the formation of Ge NC's out of a SiGeOx alloy films. Samples deposited at RT show no Ge (111) signal at T = 510°C. A weak signal can be obtained at T = 545°C. The FWHM gives, fitted and calculated with Scherrer's equation, a NC's size of 4 nm. Within further annealing up to 630°C the average cystal size increases and is finally around 7.2 nm at T = 690°C [Tab. 1]. The interface roughness of the SL structure increases significantly after this annealing step. Annealing at 810°C finally destroys the superlattice structure. This corresponds with a huge increase of the Ge NC's size after this annealing step. The crystals are equal sized or even bigger in size then the SL period (9.64 nm).

Fig. 3a: Ge(111) *signal measured with GIXRD for the SL deposited at room temperature.*

T (°C)	Ge (111), Fit 2 (Lorenzian)				
$I_A(C)$	20 (deg)	FWHM	NC Size		
545 °C	19.032	1.427	4.54 nm		
570 °C	18.975	1.501	4.32 nm		
630 °C	19.031	1.110	5.85 nm		
690 °C	19.038	0.898	7.22 nm		
810 °C	19.021	0.655	9.90 nm		

Tab. 1: Fit results of Ge (111) reflection

References:

[1] M. Zacharias et al., Thin Solid Films **278**, (1996), 32-36

Fig. 3b: Ge(111) signal measured with GIXRD for the SL deposited at $200^{\circ}C$

The observed Ge (111) signal of the samples deposited at $T = 200^{\circ}C$ leads to a well pronounced signal at 600°C [Fig. 3b]. Here the crystal size can be determind to be 2.3 nm. It shows that Ge NC's have almost reached the maximum possible size which corresponds to the GeO_x layer size of about 2.4 nm.

From these results one can clearly conclude that the stochiometry of the GeOx layer is influenced strongly by the depositon temperature.