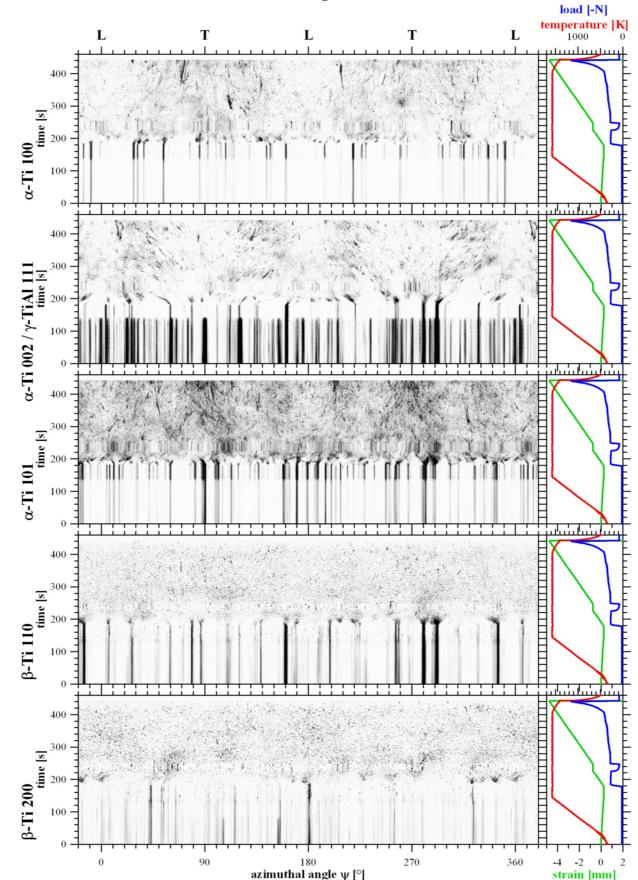

ESRF	Experiment title: In-Situ Thermo-Mechanical Simulation in Titanium Aluminides	Experiment number : MA - 736
Beamline:	Date of experiment:	Date of report:
ID15A	from: 17. June 2009 23. June 2009	20. 8. 2009
Shifts:	Local contact(s):	Received at ESRF:
12	Dr. Veijo Honkimäki (+ Dr. Matthew Peel)	20. 8. 2009
Names and affiliations of applicants (* indicates experimentalists):		
Klaus-Dieter Liss ^{1,*} , Kun Yan ^{1,2,*} , Rian Dippenaar ² , Helmut Clemens ³ + Thomas Schmoelzer ^{3,*} , Mark Reid ^{2,*}		
¹ Australian Nuclear Science and Technology Organisation, PMB 1, Menai NSW-2234 (Australia)		
² Faculty of Engineering, University of Wollongong, Wollongong, NSW-2522 (Australia)		

³ Department of Physical Metallurgy and Materials Testing, Montanuniversität, A-8700 Leoben (Austria)

In-Situ Thermo-Mechanical Simulation in Titanium Aluminides


A hot-compression test has been undertaken in a highenergy synchrotron X-ray beam to study in-situ and in real time the bulk of a novel, β -solidifying titanium aluminide alloy. The occupancy and spottiness of the diffraction rings (Fig 1) is evaluated (Fig 2)in order to access grain statistics, such as grain growth / refinement, orientation relationships, subgrain formation, dynamic recovery and dynamic recrystallization as well as phase transformations. For the first time, this method has been applied to an alloy consisting of two co-existing phases at high temperatures and it is found, that the *bcc* β -phase dynamically recrystallizes much faster than the hcp α phase which deforms dominantly through crystallographic slip underpinned by a dynamic recovery process and only little by dynamic recrystallization. It is found, that the two phases deform mostly independently besides each other. The rapid recrystallization dynamics of the B-phase combined with the easy and isotropic slip characteristics of the *bcc* structure explain the excellent deformation behavior of the material. The presence of two phases suppresses grain growth effects efficiently.

Publication: K.-D. Liss, T. Schmoelzer, K. Yan, M. Reid, M. Peel, R. Dippenaar, H. Clemens: "Dynamics of hot-deformation in multi-phase TiAl based intermetallics studied in-situ by time-resolved high energy X-ray diffraction", to be submitted

Figure 1: Representative parts of the acquired diffraction rings compiled in 3 sectors: (a) below the alpha transus temperature T_{α} , showing α -, β and γ -phases in co-existence; (b) above T_{α} where γ disappeared before plastic deformation and (c) above T_{α} during plastic deformation. The common ring center is marked with a crossed scale bar of 1 Å^{-1} and the longitudinal load direction **L** is indicated.

Acknowledgements: The Australian participants acknowledge travel funding provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron. The ISAP is funded by a National Collaborative Research Infrastructure Strategy grant provided by the Federal Government of Australia.

Figure 2: Azimuthal-angle-time plots of the first three α - and two β -reflections. The α -002 and γ -111 reflections overlap and cannot be separated until the γ -phase disappears at the α -transus temperature. The initially static grain statistics evolves turbulently upon the application of strain and pauses when strain is held for a while, as indicated by the deformation parameters to the right of each plot. Longitudinal and transverse load directions, **L** and **T**, respectively, are given at the top of the azimuthal-angle axis.