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The morphology and the microscopic internal dynamics of a bidimensional gel formed by 
spontaneous aggregation of gold nanoparticles confined at the water surface are investigated by a 
suite of techniques, including grazing-incidence x-ray photon correlation spectroscopy (GI-XPCS). 
The range of concentrations studied spans across the percolation transition for the formation of 
the gel. The dynamical features observed by GI-XPCS are interpreted in view of the results of 
microscopical imaging; an intrinsic link between the mechanical modulus and internal dynamics is 
demonstrated for all the concentrations. Our work presents, to the best of our knowledge, the 
first example of a transition from stretched to compressed correlation function actively controlled 
by quasistatically varying the relevant thermodynamic variable. Moreover, by applying a model 
proposed time ago by Duri and Cipelletti [A. Duri and L. Cipelletti, Europhys. Lett. 76, 972 (2006)] 
we are able to build a novel master curve for the shape parameter, whose scaling factor allows us 
to quantify a “long time displacement length”. This characteristic length is shown to converge, as 
the concentration is increased, to the “short time localization length” determined by pseudo 
Debye-Waller analysis of the initial contrast. Finally, the intrinsic dynamics of the system are then 
compared with that induced by means of a delicate mechanical perturbation applied to the 
interface.  
 
PACS 
82.70.Gg – Gels and sols 
61.05.cf – X-ray scattering (including small-angle scattering) 
83.80.Kn Physical gels and microgels 
68.18.Fg LB: Liquid thin film structure: measurements and simulations 
 
 

1. Introduction 

Films formed by nanoparticles confined at an interface, either separating liquid from air or two 
immiscible liquid phases, are extensively studied [1] due to their importance in a wide range of 
systems, from the stabilization of emulsions and of foams [2] to the formation of photonic or 
plasmonic membranes [3,4]. Films made by noble metal nanoparticles in particular have recently 
been shown to form mechanically robust, free-standing membranes [5,6] which can be important 
for the fabrication of high-efficiency solar cells and displays. 



Unlike the case of 3D colloidal suspensions, which often can be described reasonably well using 
Derjaguin–Landau–Verwey–Overbeek theory (DLVO), the description of particles at interfaces 
requires the consideration of interfacial deformations as well as interfacial thermal fluctuations, as 
complex intercolloidal forces act within these 2D assemblies, which also depend on the contact 
angle of the individual colloids, with possible long ranging effects. Moreover, hydrodynamic 
coupling between the 2D films and the bulk of the surrounding fluids complicates the 
measurement and the modeling of surface dynamic properties. For all these reasons, the 
theoretical comprehension of interfacial colloidal systems still represents an outstanding problem 
in the modern theory of colloidal interactions [7]. 
Langmuir monolayers of colloids at the air-water interface constitute a model system commonly 
used to investigate the structure and properties of such interfacial systems, recently applied also 
to the study of films of gold nanoparticles [8].  
We remark that accurate structural and mechanical characterizations, with a quasi-statically 
increase of the concentration, are peculiar of the 2D geometry; a comparable analysis on 3D 
systems would be much more difficult. Interfacial stability may become an issue when the 
concentration is increased. Structural investigations by grazing incidence X-ray scattering have 
been employed to elucidate the structure of deposited Langmuir Blodgett [9] and unsupported 
Langmuir monolayers [10]. In favorable cases, the contact angle of individual particles could be 
estimated by accurate modeling of the x-ray reflectivity curve [11,12]. 
In these films, high concentration regimes may present temporal and spatial dynamical 
heterogeneities, in conjunction with the arising of slow dynamics often leading to dynamical arrest 
and to ageing phenomena. Such heterogeneities reflect the complexity of the structural 
arrangements and interactions among the colloids. As a matter of fact, dynamical heterogeneities 
of different kind are the fingerprints of the different models that over the years have been put 
forward to describe dynamical arrest. Their detailed quantification is therefore a crucial step in 
understanding the dynamics of systems approaching the arrested state [13].  
This task can be accomplished by measuring high order correlation functions, e.g. to characterize 
the non-Gaussian dynamics of arrested systems [14,15]. In a previous work, we have been able to 
identify heterogeneities by grazing incidence X-ray photon correlation spectroscopy (GI-XPCS) [16] 
in a Langmuir polymeric monolayer [17] and in the highly compressed phase of a 2D gel generated 
as a Langmuir monolayer of gold nanoparticles [18]. In the former case, heterogeneous dynamics 
could be observed clearly in the photo-induced fluid phase of the polymer, while in the latter case, 
heterogeneity was found to be growing with increasing surface compression, and the quality of 
the data was good enough to allow the first experimental determinations of the fourth-order 
temporal correlation function in an arrested system by GI-XPCS. The morphology of the same 
system has been investigated in detail by microscopy techniques, revealing a complex structure 
with features on a hierarchy of different sizes following a Levy distribution [19]. The evolution of 
the statistical properties of the structured network, as a function of the externally controlled 
density, can be related to the corresponding evolution of the mechanical properties. Three steps 
can be identified in the gel formation: a first step occurs in the incubation time, in which the 
individual nm-sized gold nanoparticles aggregate to form quasi 1D structures of typical length of a 
few microns (flocculation), in a fashion similar to that reported in  [20]. The second step occurs in 
the first stages of the compression, with the growth of the branched structure, finally yielding to 
the onset of the infinite percolative cluster, which is related to the building of the mechanical 
elastic modulus. Percolating transition occurs around         [21].  
It is well known that fluctuation dynamics are strictly related to mechanical moduli, via generalized 
fluctuation-dissipation relations [22]. This has been extensively exploited for the characterization 
of the rheology of interfacial layers: the measurement of their mechanical properties is a delicate 



task that can be performed by a number of techniques, which can be broadly divided into active 
and passive ones. In the former case, a deformation is applied from outside, as in the oscillating 
barriers technique [23] and in the interfacial shear rheology, in which a magnetized needle is used 
to induce shear deformation  [24,25]. In the latter case, mechanical properties are deduced from 
the spontaneous fluctuations recorded e.g. by dynamic light scattering or by XPCS 
experiments  [17,26,27]. A priori, the combination of the results of such measurements to yield a 
comprehensive picture is complicated by the different space scales involved, spanning from the 
centimeter for the ISR down to fractions of a micron in the case of XPCS. However, in most cases, 
those macroscopic and microscopic quantities have been found to agree, as e.g. in floating 
polymeric layers  [17,26]. A counterexample of this is found e.g. even in simple phospholipid 
monolayers; their macroscopically liquid and mainly viscous phase may exhibit a complex and 
mainly elastic response when probed on the micron-scale [28]. 
 
In the present paper we report a detailed study of the spontaneous fluctuation dynamics of a 
Langmuir monolayer of gold nanoparticles floating on the water surface, together with the 
relation to its structure and to its mechanical response. This is done, exploiting a peculiaritiy of the 
Langmuir technique, varying the surface concentration from well below to well above the 
threshold for the formation of a percolative cluster. The sample, its preparation and the 
experimental methods used are described in details in section 2. We start with a characterization 
of the system by different microscopy techniques such as in situ epi-microscopy of the Langmuir 
monolayer and SEM imaging of the monolayers transferred onto solid substrate; next, we report 
on the measurement of the mechanical moduli of the film (section 3.1). Then, by means of GI-
XPCS we focus on the spontaneous fluctuation dynamics and the connections to mechanical 
moduli; we investigate the evolution while crossing the percolation threshold (section 3.2). We 
discuss the changes in the dynamics and their connection with structure and mechanical moduli in 
light of different theories. Finally, we report on the effects that an external mechanical 
perturbation exerts on the fluctuation dynamics of the system, with particular regard to transient 
states (section 3.3).  
 

2. Sample and Methods 

2.1 Sample 

Nanoparticles have been synthesized as follows, by the two-phase Brust method  [29,30]. In brief, 
        (         ) of hydrogen tetrachloro-aurate(III) trihydrate have been dissolved in       
of deionized water. The solution has been then shaken in a separatory funnel with       of 
toluene solution containing        (         ) of tetra-n-octylammonium bromide (TOAB). The 
toluene phase has been then recovered and combined with          (       ,          ) of 
dodecyl mercaptane. A freshly prepared aqueous solution of sodium borohydride (     , 
       ) has been slowly added under vigorous stirring. After further stirring for 3 hours, the 
organic phase has been separated, concentrated to       and mixed with       of ethanol. The 
mixture has been cooled overnight at        and the dark precipitate then recovered by 
filtration. The crude product has been then purified by soxhlet extraction with acetone as 
cleansing solvent to remove all the unbound free thiol and residual TOAB impurities, thus making 
GNP fully soluble in organic solvents. The average diameter of GNP has been estimated to be      
by DLS analysis with a      diameter gold nucleus (TEM analysis)  [31]. 
 



The Langmuir monolayer has been prepared as follows: nanoparticles have been dispersed in 
chloroform,       in      , thus obtaining a         suspension used for long term storage in 
a refrigerator.  
Before each experiment, a small batch of less concentrated suspension have been prepared by 
dilution of the stock solution in hexane, to reach the final concentration of          . This 
suspension has been slowly spread at the air/water interface using a        Hamilton syringe; the 
tip of the syringe’s needle was kept in contact with the water surface during the whole process. A 
total volume of        has been spread on the Langmuir trough used in GI-XPCS experiments: a 
spreading time of 2 minutes was used for the spreading of each syringe. A 20 minute waiting time 
was scheduled to allow solvent evaporation and to achieve the equilibration of the sample.  
During the experiments the water subphase was kept at constant temperature (     ), by means 
of water circulation from a Lauda thermal bath through the Langmuir trough’s basement. 

2.2 Rheology measurements 

The mechanical response of the 2D system has been completely characterized, by measuring both 
the compression ( ) and shear ( ) complex moduli as a function of surface concentration. This was 
accomplished by using two complementary techniques operating -on the macroscopic scale- on 
the same temporal scale: the oscillating barriers and the oscillating needle techniques.  
The oscillating barriers technique exploit the difference in the surface pressure measured by 
perpendicular Wilhelmy plates when a dense Langmuir film is subject to uniaxial 
compression [23,32]. The experimental setup consisted of a Langmuir trough (custom made, size 
         , with KSV Nima mechanics) equipped with two identical Wilhelmy balances, which 
monitor the evolution of the surface tension (and hence the phase and amplitude of their 
oscillations      and    ) while the area available to the film is oscillated by the synchronized 

movement of the two barriers, operated at a typical frequency of       . 
From the area   , its oscillation    and the phase lag   we obtain the complex mechanical 
moduli: 
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This analysis assumes linearity in the response of the system to the external perturbation. This 
assumption was observed to hold in the diluted regimes, while at concentrations significantly 
higher than percolation, we observed important nonlinearities in the compression response even 
for the smallest amplitude of perturbation that was applicable. For this reason the oscillating 
needle technique, which imposes a pure shear perturbation, was employed to characterize the 
latter regime. The oscillating needle rheometer employed is an adapted version of the instrument 
proposed years ago by Fuller and coworkers  [24] and is described in detail in  [25]. In brief, a 
stainless steel needle (1cm long, 0.3mm radius) magnetized to saturation is incorporated in the 
Langmuir film and oscillates under the action of a suitable magnetic field gradient whose 
equilibrium position is oscillated in a sinusoidal manner. A fast CCD camera measures the 
amplitude and the phase of the oscillations of the needle. The mechanical shear modulus G is then 
obtained as follows: 
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where   is the stress exerted by the needle,   is the resulting strain and   is the phase difference 
between the oscillations of the magnetic field and of the needle.  

2.3 GI-XPCS measurements 

Multispeckle GI-XPCS experiments were performed at the beamline ID10 of the European 
Synchrotron Radiation Facility (ESRF) in Grenoble, France. An incident x-ray beam with an energy 
of       (          ) was selected from the undulator radiation by a Si(111) pseudo-channel 
cut monochromator scattering in vertical geometry (energy bandwidth          ). The beam 
was then focused with Be compound lenses while higher harmonics were suppressed by two Si 
mirrors. The spatially coherent part of the incoming radiation was selected by using roller-blade 
slits opened to         , placed          upstream of the sample. The parasitic scattering 
produced by the beam-defining slits was removed by carefully adjusting a set of guard slits a few 
cm upstream of the sample. The resulting incident flux on the sample was               
      . The beam was reflected to impinge on the liquid surface at a grazing incident angle of 
      , which is about     of the critical angle for total reflection on the water surface at this 
photon energy. 
A custom-made Langmuir trough with a single moving barrier (maximum surface      
        ) was installed on the sample diffractometer. The trough was mounted on an active 
antivibration support and provided with a plastic enclosure, under which a helium atmosphere 
was created in order to minimize parasitic scattering from air and contemporarily reducing risks of 
beam-induced damage. KSV-Nima Wilhelmy balance and electronics were used to control the 
trough and measure surface pressure and trough’s area during GI-XPCS measurements. The 
mechanical perturbation of the film was provided by a     long magnetized needle that was put 
in oscillation by two magnets inserted for this purpose. The magnets where suspended parallel to 
the water surface by means of a plastic support, with their dipoles mutually perpendicular. One of 
them was permanent, needed to define the equilibrium position and orientation of the needle, 
while the second, an externally controlled electromagnet, was used to rotate the needle thus 
providing the required perturbation to the film.  
Two-dimensional x-ray scattering speckle patterns were recorder by using a photon counting area 
detector (Medipix,         pixels,       pixel size, [33]) placed at a distance of       from the 
sample. The exposure time of the Medipix detector has been chosen to be long enough to warrant 
a reasonable S/N ratio,             in our case. To avoid unnecessary irradiation of the 
sample, a fast shutter, synchronized with the area detector, was placed upstream of the sample. 
Sets of up to       images were collected for different sample concentrations with different 
exposure times. The intensity time correlation functions were calculated from the series of two 
dimensional images by software. 
 

3. RESULTS AND DISCUSSION 

3.1 Morphology and mechanical response 

Exploiting the peculiarity of the 2D geometry of a Langmuir experiment, we performed 
experiments covering a wide range of surface concentration  . In our system, as   is increased, a 
2D network of gold nanoparticles is formed. The process of formation of the network has several 
similarities with a percolation transition, as it has been thoroughly characterized in a microscopy 
experiment  [21]. A sample of the resulting network, imaged by an inverted microscope, acquired 
with a 50X objective, is shown in figure 1a. 



  
Figure 1: At each surface pressure  , the concentration of gold nanoparticles at the surface is 
monitored by imaging. a) image of the GNP network at      , taken using an inverted 

microscope with a 50X objective (the black scale-bar is 200m long) b) Surface pressure - 
concentration isotherm measured during the GI-XPCS experiment. GI-XPCS measurements were 
performed at the concentrations indicated by the empty circles. As a double-check,   was also 
directly measured by SEM imaging on two samples transferred on solid silicon substrate (red 
squares). Color online. 
 
Figure 1b shows the surface pressure – concentration     isotherm recorded during the GI-
XPCS experiment. The determination of the surface concentration   is very important for the 
following discussion, therefore it has been cross-checked by employing different  techniques: In 
our laboratory, besides calculating   from the spread amount, as usual in Langmuir experiments, 
we also performed in-situ epi-microscopy and Brewster Angle Microscopy on the film floating at 
the air/water interface, in addition to Scanning Electron Microscopy (SEM) imaging of samples of 
film transferred onto Silicon substrate. The estimates of   arising from these investigation are all 
consistent with that calculated from the spread amount of nanoparticles [19,21]. 
For the GI-XPCS experiments reported here, the estimate from the spread amount has been cross 
checked ex-post by SEM imaging of samples of film transferred onto silicon substrate at selected 
values of  . The results- reported in figure1b – show good agreement between the two 
determinations.  
 



 
 
Figure 2:   dependence of the mechanical properties of the GNP network during its formation 
process. a) the network shows mainly elastic shear modulus, which increases with  . b) the 
compressibility stays constant up to the percolation threshold (vertical line). 
 
The evolution of the mechanical response above and below the percolation transition has been 
measured using the techniques discussed in the experimental section; results are reported in 
figure 2. 
While it is reasonable to postulate that, at very dilute concentrations, a viscous/dissipative regime 
shall exist (which however may corresponds to extremely low values of the moduli, well below the 
sensitivity limits of the techniques used), in the range relevant to our case, both shear (   ) and 
compression ( ) moduli are mainly real, indicating an elastic response, in agreement with previous 
results on the same system [19]. There is an important difference however between shear and 
compression responses. As shown in figure 2a,   presents a transition between two different 
regimes: for       it has a very small value (below 0.2mN/m, close to the sensitivity limit of 
the technique) while as the percolation threshold is approached,   starts to increase, reaching a 
saturation value of the order of         , above which it enters a nonlinear regime, indicative 
of the intrinsic brittleness of this structure. On the contrary, as shown in figure 2b, the 
compression modulus   stays constant at all the concentrations below the threshold, and 
nonlinear effects dominate above this concentration. 

3.2 Intrinsic dynamics probed by GI-XPCS 

The dynamics of the GNP network have been measured by recording the X-ray intensity scattered 
from the sample in the grazing incidence diffraction experiment described in the experimental 



section, at several values of  , in correspondence of different values of the components of the 

scattering vector in the directions parallel (   ) and perpendicular (  ) to the air/water interface. 

The pixels of the 2D detector have been divided into square groups, each of which is labeled by its 

scattering vector components (      ). From the scattered intensity measured by each group of 

pixels as a function of time we calculate the intensity autocorrelation function 
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In soft-matter experiments, the correlation functions are commonly described using the empirical 
Kohlrausch-William-Watts (KWW) exponential 
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where   is the relaxation time of the dynamics,   is the contrast and  , called shape parameter, is 
connected to the kind of dynamics that characterize the system, together with the dependence of 
  from q. We briefly recall here that, in case of Brownian dynamics,       and    ; pure 
ballistic motion shows       and     [34], while more complex systems display some 
intermediate behavior, e.g. many arrested systems show a compressed shape often with      . 

 
Figure 3: correlation functions decay as KWW exponentials. Here, correlation functions measured 
at       at several values of q are shown. Continuous lines are fits to KWW phenomenological 
law. Color online. 
 
Figure 3 reports data and fit models for correlation functions measured at      . The initial 
contrast of the correlation functions shows a clear dependence on q. When additional relaxation 
processes faster than the exposure time are present, they cause a sort of “blurring” of the speckle 
pattern. This implies a reduction of the contrast   with respect to its theoretical value   ; this 
reduction depends on q following a pseudo Debye-Waller decay  [27] ruled by the localization 

length      √〈  〉 :  
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) eq.(6) 

 
This is clearly the case for our data, as inspection of figure 3 shows that the initial contrast is well 
below the theoretical value which in our experimental geometry is approximately       . In 



figure 4a we report the q-dependence of   together with the fits to equation 6. By this analysis, 
the localization length      can be extracted, as reported in figure 4b. The value of     decreases 
linearly with   at low concentration, reaching a value compatible with the particle’s diameter (8 
nm) at about    ; while it stays constant at higher concentrations. The linear decrease is 
hallmarked by the black line in figure 4b.  
Interestingly, 22% is close to the concentration range in which we found GNP flocculation into 
spherical aggregates that grow in size as concentration is increased  [21], at higher concentration a 
second step occurs in the process of network formation: string-like aggregates appear on 
approaching the percolation transition. 
Therefore, the decrease of      to 8nm upon increasing concentration,  may be interpreted as if 
the fast single-nanoparticle motion becomes more and more hindered by the spatial constrains 
put by neighbors.  
 

  
Figure 4: the contrast decays with     following a Debye-Waller dependence. a) Data for three 

different concentrations are plotted on a semi-logarithmic scale as a function of the squared 
scattering vector. Lines are fit to equation 6. b) localization length     as a function of 
concentration: increasing   it decreases to reach a value comparable with the size of an individual 
nanoparticle (8nm, dashed blue line). The vertical red line represents the percolation threshold. 
Color online. 
  



 
Figure 5: both the relaxation time   and shape exponent   decrease at large    . 

a) map of relaxation time   as a function of the 2 components of the scattering vector,    and   , 
for       . Values of the color scale are in seconds. b) detailed dependence of   from    

measured at different concentrations (            ). The      
   behavior is also shown for 

comparison (dashed line) c) shape parameter   as a function of    and of  . The black line 
represents the contour of    , i.e. of simple exponential decay, while the white dashed 
horizontal line indicates the critical concentration (see text) d) detailed    dependence of   for the 
same concentrations of panel b (            ). Color online. 

 
In panel a) of figure 5 we report the values of   obtained from the fits to the KWW relation of the 
correlation functions measured at      . In agreement with our previous investigations [18] 
we find that   depends only on the parallel component of the scattering vector    , which varies in 

the horizontal axis in the figure, and not on the perpendicular one, thus confirming that the 
dynamics is confined at the air water interface. Therefore, in all the subsequent analysis, we 
averaged the results along    to improve statistics. We also find that   scales always as      

   

with   of the order of 1 (figure 8b), a feature common to many arrested systems.  
 
 
Notably, the shape exponent  , shown in panel c) of the same figure, varies as a function of     and 

of the concentration  . In the range covered by the present study we are able to document a 
transition from stretched (   ) to strongly compressed shape (     ) as the concentration is 
increased, and     is decreased..  

The contour line marks the threshold value of    , corresponding to simple exponential decay, 
while the dashed line indicates the threshold concentration for the onset of the percolative 
cluster. The observed change in shape is a signature of a change in the physical mechanism 
responsible for the underlying dynamics. While a stretched shape would suggest a distribution of 
Brownian diffusors, with an heterogeneous distribution of relaxation times, the transition to a 
compressed shape, accompanied by     is a signature of an arrested system. Similar stretched-
compressed dynamical crossover have been also reported in few different out of equilibrium 



materials such as nanoparticles in glass former matrix [35], metallic glasses  [36] and, very 
recently, in Laponite suspensions by Angelini et al. [37]. In the latter, the authors observe        
in an aged Laponite suspension (         ), while rejuvenation by means of mechanical 
perturbation seems to induce a more compressed shape (      at low  , decaying to      as   
increases). 

Figure 6 (a) the dependence of   on   is linear in the     range explored. Continuous lines are linear 

fit. The dashed line indicates the simple exponential shape (   ) (b) the extrapolation of   at 
    decreases with increasing    . 

 
Figure 6a represents a different way of recasting the data of figure 5c, highlighting that, at a given 
   , it is possible to control the shape of the correlation functions from stretched to compressed, at 

will, just by varying the surface concentration, which is achieved simply by moving the barriers of 
the Langmuir trough. In detail, at every      value, we observe a linear relation of   and  , with the 

same slope and varying intercept, whose dependence on    is depicted in figure 6b. 

The complex dynamics of our system are not trivial to interpret on a microscopic scale. A 
compressed relaxation is predicted within a detailed model proposed by Bouchaud and Pitard [38] 
for the dynamics in an elastic solid. Within this model, randomly appearing dipolar stresses 
generate a field of strains in the network of the elastic gel. It is then assumed that the dynamics of 
the diffusors is determined by the relaxation of such local strains, leading to the compressed 
shape of the correlation functions. This detailed model, however, puts strict constraints on the q-
dependence of   (predicting two regimes,       for small   and        for large  ), which do 
not agree with our data. 
A more phenomenological model was put forward by Duri and Cipelletti some years ago  [39]. 
Those Authors attribute the compressed shape for the relaxation found in DLS and XPCS 
experiments to rare, intermittent rearrangements. They deduce a variation of the shape from 
compressed with       to simple exponential as a function of the reduced scattering vector, 
obtained scaling q by a typical length   characterizing the displacement. In this case, the lower 
limit to the shape parameter (   ) is dictated by the regime in which a single displacement is 
sufficient to fully decorrelate the signal. The variation of   predicted by this model is manifestly 
more limited than what we observe. It is possible however that a similar model may hold in our 
case, if a spatially heterogeneous distribution of relaxation processes generates a distribution of 
relaxation times, leading to    . On the other hand, the upper limit of the range (     ) 
predicted by this model is connected with the power law decay of the probability distribution 



function of the displacements    observed in the gel. This distribution is assumed to be Levy-
like  [39,40] with its tail towards large    being proportional to      with          . 
Therefore, our results (       at low-q and high concentration) would imply a steeper decay of 
the displacements’ probability distribution in the low-q and large   regime, leading to an 
increased ballistic-like character of the dynamics.  
Encouraged by these considerations, we compare our results with a variant of the model proposed 
in  [39]: the values of   measured at each concentration are then plotted in figure 7a, on an 
adimensional axis provided by the scaled scattering vector     so that they overlap, collapsing on 
a master curve, in analogy with figure 3 of  [39]. In this construction, an overall scale factor needs 
to be determined. This is accomplished by noting that for       the model predicts    , 
therefore the absolute values of   can be determined. The master curve thus obtained is in 
agreement with the model curve up to      , above which value the model would plainly 
predict    , while we observe a stretched shape. As anticipated, this can be reconciled with the 
model assuming that in our case we observe a spatially heterogeneous distribution of relaxation 
times. The scaling parameter  , reported as a function of   in figure 7b, naturally offers us an 
estimate of the “long time displacement length”, i.e. of the dynamics taking place on the time 
scale of  . In the same figure, it is compared with the “short time localization length”     , deduced 
from the Debye-Waller decay of the contrast, which on the contrary characterizes the length scale 
of the fast dynamics. While it is notable that a single framework is able to describe the dynamics 
of this system over a broad range of concentrations, detailed inspection of the figure suggests that 
two different regimes exist, above and below the percolation threshold: below it, the length scales 
     and   of the fast and slow dynamics decouple, while above it they become equal within 
experimental accuracy, and also comparable to the size of the single nanoparticle.  

 
Figure 7: master curve built from   as a function of scaled scattering vector at different   a) 
 (  ) curves are shifted along the x-axis by the scaling length   so that they overlap. The resulting 
master curve is in partial agreement with the model (solid line) proposed by Duri et al.  [39]. b) 
“long time displacement length”   as a function of  , compared with the “short time localization 
length”         becomes comparable with the particle size (8nm, horizontal line) and      above the 
percolation threshold (vertical dashed line). Color online. 
 



 
Figure 8. Approaching the percolation transition, the shear modulus G’ and the relaxation time   
increase following the same law; a) comparison of G’ and   as a function of  : they follow the 
same behavior. Limit values are reached by both quantities above the percolation threshold 
(vertical red line) b) the parameter n in the dependence      

   decreases as the concentration is 

increased. The blue dashed line represents    . Color online. 

 
 
Figure 8 reports the concentration dependence of   and of the exponent   detailing the 

dependence of   on   . Defining the ‘effective’ relaxation time as         
 (  ⁄ )

 
  [41] (where   is 

the gamma function) we can compare its behavior with that of the mechanical modulus G. This is 
shown, for              , in figure 8a;      increases as the concentration is raised in the same 

fashion as the elastic shear modulus   .  
In the high concentration regime (e.g. around the percolation threshold) this finding is consistent 
with the prediction of the already mentioned Bouchaud-Pitard model [38] for the relaxation in an 
elastic solid. In this case,   is predicted to be proportional to the elastic modulus and inversely 
proportional to   as observed experimentally and reported in figure 8. We remind, however, how 
the model partly failed in explaining the compressed-to-stretched transition of the correlation 
functions’ shape reported in figure 5c and discussed before.  
Notably, we find that the agreement between      and    holds on the whole   range, even at 

those lower concentrations where the correlation function shape is stretched, namely for 
     . This may be rationalized considering that, even in this regime, the film dominant 
mechanical response is elastic. In a similar nano-gel in 3D, Guo et al.  [42] verified a relation 
between G’ and localization length which is postulated in a self-consistent mode-coupling 
theory  [43]: this relation does not hold in our case, as   is constant for       within the error, 
while the localization length (figure 4b) decreases.  
The general picture emerging from the agreement between      and    is that of a system in 

which fluctuation dissipation relations hold, even connecting results spanning very different space 
scales, from microns (GI-XPCS) to centimeters (rheometry). 



 
Panel 7b reports the dependence of the exponent   on  . The coefficient     in the scaling 
     

   observed by us in the stretched regime (     ) is unexpected and, to the best of our 

knowledge, it has been reported before only in the case of Laponite. Further theoretical 
investigations may be needed in order to formulate a physical model for this behavior. On the 
contrary, the slight reduction of the exponent n towards 0.8 observed in the compressed regime is 
consistent with what already observed at higher concentration on the same system [18]. 
 

 
 

3.3 Dynamics and relaxation following a perturbation 

Following the characterization of the spontaneous dynamics of the 2D network as a function of  , 
we now focus on the effects on the dynamics caused by an external mechanical perturbation due 
to the oscillatory movement of a magnetic needle floating on the surface, in a similar fashion to 
the ISR apparatus [24] used to measure the mechanical modulus of the system, as better 
described in the experimental section. 
To check for stationarity, and to better characterize each starting point, the dynamics of the 
system has been measured before applying any perturbation; then the perturbation was applied 
for 10 minutes, with the magnetic needle put into angular oscillation on the surface, at frequency 
of 10Hz and amplitude     . The needle was      long: given the total area occupied by the 

film, this perturbation induced a relative area variation 
  

 
     . The perturbation ended by 

bringing the needle back to its initial position. In this way, we can exclude that the dynamics 
observed after the perturbation reflect some obvious stress relaxations on the macro-scale.  
During the needle’s movement, no GI-XPCS measurement was possible, due to the obvious and 
drastic decorrelation induced by the mechanical perturbation. 
 

 
Figure 9: A mechanical perturbation affects the fluctuation dynamics in different ways for films 
above and below the percolation threshold. The localization length, measured below (  , a) and 
above (   , b) the percolation threshold. While a major effect of compaction is induced at   , 
very little effect is produced at    ; alongside this, the recovery of the unperturbed state is much 
quicker at low concentration. Insets: effective relaxation times increase after perturbation, 
measured at             . c, d) At      , the mechanical perturbation causes and increase 

in the slope of the      
   dependence and in the shape exponent  . Color online. 

 



After switching off the perturbation, the dynamics of the network was measured following the 
usual procedure, mapping the evolution of the dynamical parameters extracted from the 
correlation functions as a function of the experimental time, on a temporal scale of tens of 
minutes.  
The experiment was performed at two different concentrations- namely at      and 
      - chosen to be below and above the percolation threshold; the results are reported in 
figure 9a and 9b. The first, striking result is that in both cases the localization length      is found 
to be sensibly reduced by the perturbation, and its unperturbed value is recovered only on a time 
scale as slow as 10-20 minutes, though the recovery seems to be faster at low concentration. 
Alongside this,   is increased; at concentration      it relaxes back to values close to those of 

the system’s unperturbed state in less than 10 minutes, while at concentration = 36%, the effect 
of the perturbation on the dynamics is persistent on a much longer time scale, indicating that a 
relevant permanent modification of the 2D network might have been induced. Consistently, for 

= 36%, the parameter n shows an increase from       (unperturbed value) up to       
immediately after the perturbation, to slowly decrease in the subsequent times towards the 
unperturbed value (figure 9c). 
More relevant changes are found in the analysis of the shape parameter (figure 9d). The 
perturbation induces a more compressed form, reaching       at             , consistent 

with the interpretation of the data provided in [43] for Laponite. Notably, this stress-induced 
effect was not observed instantaneously at the switch off of the perturbation, rather it peaks 
roughly after 10 minutes after this. For longer times, the system then reaches a new state 
characterized by      , a value slightly lower than the unperturbed state, that may be 
interpreted as a new stationary state in which stress relaxation is comparably less important than 
before the perturbation was applied.  

Figure 10: insight on the effects of the mechanical stress on the dynamics, displaying the age 

dependence of the correlation functions,  ( )(      ̃) at      and             . Black 

lines represents   as a function of the ageing time. The mechanical stress induces heterogeneities 
in the characteristic time of the dynamics, that disappear in a few minutes. Color online. 
 
In order to investigate the temporal evolution of the dynamics and to shed more light on transient 
effects, we calculate the two-times correlation functions, defined as 
 

 (     )  
〈 (  )  (  )〉

〈 (  )〉〈 (  )〉
 eq.(7) 

 
where the average is performed over the pixels characterized by the same    and  (  ) and  (  ) 
are the scattered intensities measured at two different experimental times    and   . It is 
customary to represent it as functions of the ageing time                 and of the lag time 



 ̃          ; graphically, one can imagine to extract  ( )(      ̃) correlation functions by 

selecting rectangular slices of  (     ) taken perpendicular to its main diagonal [14].  
The calculation is performed on data measured before and after the application of the stress, 
           and for concentration     . Subsequently, the correlation functions 

 ( )( ̃)|
    

 selected at different values of      have been fitted with simple exponential decays, 

in order to obtain the evolution of the relaxation time   with increasing     . 

Figure 10 shows  ( )(      ̃) measured before and after the mechanical perturbation: relaxation 

times  (    ) resulting from the fitting procedure is plotted as black lines. 

 
The application of the mechanical stress causes the onset of a dynamical heterogeneous state, 
with successive random appearance of slow dynamics, even after that the mechanical 
perturbation has been switched off. This causes, on average, the slower relaxation time extracted 

from the correlation functions  ( )( ) , reported in the inset of figure 9a. The dynamical 
heterogeneous state disappears after few minutes, with the complete recovery of the 
unperturbed state.  

 
Figure 11: effects of the mechanical stress on the variance   of the two-times correlation 
functions, at     . The mechanical stress induces an increase of the variance of the two times 
correlation functions, with the appearance of a peak. This peak disappears after a waiting time of 
a few minutes (flat variance). Color online. 
 
This is confirmed by the analysis of the variance  ( ̃) of the two-times correlation function, 
defined as: 

 ( ̃)   〈  (      ̃)〉  〈 (      ̃)〉
  eq.(8) 

 
which is also related to the dynamical susceptibility. 
As shown in figure 11, in the unperturbed state the system is characterized by a featureless 
variance; after the mechanical perturbation, the variance shows a peak centered at  ̃       , 
which disappears at longer times, when the effects of the perturbation vanish. The presence of a 
peak in the dynamical susceptibility is commonly associated, in the literature, with the onset of 
dynamical heterogeneity; in our case, it may indicate that the mechanical perturbation affects the 
2D network in a non-uniform way, activating random relaxing stresses that propagate as density 



fluctuations and disappear in the time range of a few minutes. This phenomenology is consistent 
with analogous results obtained by means of DLS measurements on colloidal gel [39]. 
 

4. CONCLUSIONS 
 
 
The evolution of the dynamics of a bidimensional gel formed by gold nanoparticles at the 
air/water interface has been characterized by means of GI-XPCS, supported by imaging and by 
rheology measurements. Mechanical measurements have shown that the structure behaves as a 
bidimensional elastic solid at all concentrations. The increase of the elastic shear modulus as a 
function of surface concentration closely mimics that of the GI-XPCS relaxation time. The general 
picture emerging is that of a system in which fluctuation dissipation relations hold, even 
connecting results spanning very different space scales, from microns (GI-XPCS) to centimeters 
(rheometry). In particular, this has been predicted within a model proposed by Bouchaud and 
Pitard  [38], which however fails to account for the observed shapes of the correlation functions: 
we document in our system the first example, to the best of our knowledge, of an actively 
controlled transition from stretched to compressed shape. The observed behavior seems better 
reconcilable with a phenomenological model proposed by Duri and Cipelletti [39] which 
hypothesizes that the correlation of the scattered intensity is driven by rare intermittent 
rearrangements. Exploiting the unique opportunity offered by the Langmuir 2D geometry to 
continuously vary the concentration on the very same gel system, we could push further this 
analysis and we have built a novel master-curve for the shape parameter as a function of the 
reduced scattering vector. According to the model  [39], the scaling factor of this master curve 
corresponds to the “long time displacement length”  , characterizing the dynamics happening on 
the time scale of a few seconds. This is distinct from the “short time localization length     , 
determined by the usual pseudo Debye-Waller analysis of the initial contrast, which characterizes 
dynamics faster than 10 milliseconds. In the low concentration regime we find the         , 
much larger than the value of     ; however as the concentration   increases towards the 
percolation threshold, the two lengths converge to a common limit comparable to the single 
particle size.  
 
We also address dynamical heterogeneities, extending our previous observations [18] by focusing 
here on the low concentrations and on the deep out-of-equilibrium regimes induced by an 
external mechanical perturbation. This perturbation induces an increase of the relaxation time, 
accompanied by an increase of the shape exponent  . This fact indicates a more compressed, 
ballistic-like character of the dynamics as a consequence of the perturbation applied, and suggests 
an analogy with the results obtained by XPCS on aged and rejuvenated Laponite [43].  
At the same time, perturbation enhances the temporal heterogeneities, leading to the appearance 
of a peak in the variance. After the end of the perturbation, the relaxation towards the initial 
stationary state, happens on the time scale of a few minutes at low concentration, while at high 
concentration takes much longer.  
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