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Report:  
 
Background: Due to positive pressures and tidal stretch, mechanical ventilation is thought to induce 
microscopic mechanical injuries in the acini causing inflammation, which can spread to the whole organism. 
This condition may induce multiple organ failure and ultimately death (1). Complications of mechanical 
ventilation can occur in normal lung, as a result of mechanical ventilation during routine anesthesia. 
Moreover, Ventilator-induced lung injury (VILI) is one of the major reasons for increased mortality in 
ventilator treated patients with acute respiratory distress syndrome (ARDS), and in patients with acute 
respiratory failure, in the intensive care setting. The intimate mechanisms of exaggerated mechanical stresses 
in the lung tissue are not known, neither in normal or injured lung. Different hypotheses such as cyclic 
recruitment/dercruitment (R/D) of airways and alveoli, or displacement of fluid bridges within these 
structures have been proposed. These phenomena can be highly dynamic and are thought to evolve 
progressively over time leading to gradual increases in lung elastance (2). Little is known however, about the 
short time-scale dynamics of R/D. The goal of this study was to quantify short-term R/D by repeatedly 
imaging the lung within tens of seconds, at length scales within the pulmonary acini (3) and to assess the 
effect of positive end-epiratory pressure (PEEP) on reginal lung prenchymal microdynamics.  
 
Methods: New-Zealand White rabbits (n=6) were anaesthetized, paralyzed and mechanically ventilated in 
PC mode (Vt: 8 ml/kg; RR: 40; FiO2 0.6; I:E 1:2, and PEEP: 3 cmH2O). In order to enhance structural 
features, phase-contrast CT imaging was performed using synchrotron radiation and reconstructed with a 
phase-retrieval algorithm [1] with a 45.5×45.5×45.5 µm3 voxel size. Following a recruitment maneuver (20 
cmH2O, 10 s) 44 contiguous lung slices were imaged in 22 s, 3 times at approx. 100 s intervals, in 3 adjacent 
axial levels consecutively at PEEP 12,9, 6, 3 and 0 cmH2O. An example in one axial slice at PEEP0 is given 
in Figure 1. The imaging sequence was repeated after lung injury induced by 100 ml/kg whole lung lavage 
followed by injurious mechanical ventilation (Peak pressure 35 cmH2O, Peep: 0 cmH2O, FiO2 1.0) for 120 
min. The volume of aerated lung was calculated on the basis of CT density. The regional distribution of R/D 



was analyzed by subtracting subsequent volumetric images following image-registration, using a B-spline 
elastic registration algorithm (Figure 2).  
 
Cross-sections (CSaw) of the same individual airways were measured at all PEEP levels at baseline and - in 4 
rabbits - after lung injury. Strain was defined as: (L – l)/L; L and l: airway perimeter at 12 and 0 cmH2O, 
respectively. 
 
In order to further assess expansion and recruitement in the lung periphery, in 5 animals, the CT images were 
transformed into binary images, using 3 different thresholds, aiming at differentiating airspaces from tissue. 
We measured the numerosity of recruited airspaces and the surface they covered, as an expression of alveolar 
recruitment and distension at different lung volumes, using a computer algorithm which estimated the 
number of airspaces (NA), measured their surface area (SA) and calculated the SA/NA ratio in one Regions 
of Interest (size: 910x455 µm) per image. 
 

 
Figure 1. Top: airway opening pressure showing the sequence of image acquisition; bottom: sample images in injured lung in one 
axial slice level at 3 successive timepoints.  
 
 
Results 
 
1. Short-term R/D demonstrated by phase-contrast CT imaging in injured lung 
 
Clustered areas of both recruitment and derecruitment occurred over the studied time intervals (Figure 2). 
Although proportionally better aeration was maintained with PEEP, R/D occurred at all PEEP levels (Figure 
3). Our data demonstrate that recruitment/derecruitment in injured lung occurs over short time scales, often 
in clustered regions where neighboring regions showed alternating R/D behavior. These findings suggest that 
the critical opening pressure of peripheral lung units shows both spatial and temporal heterogeneity and that 
mechanical interdependance between neighboring lung regions are possibly involved in the dynamics of R/D. 
These results are important for better understanding of the dynamics of ventilator-induced lung injury. 
 



 

 
Figure 2. Rabbit Injured lungs under mechanical ventilation in vivo. Top: R/D volumetric anaysis at PEEP 6 cmH2O, 
showing closed airspaces that remain closed (black), opening airspaces (green), closing airspaces and open airspaces that remain 
open (grey).; bottom: the left two panels show a terminal bronchiole, which is initially opening (green) and few breaths 
later closing (red). The right two panels are magnifications showing that within an acinus, the central alveoli are 
initially opening  (green), while those in the periphery are closing (red); a couple of breaths later the central alveoli 
close and then empty themselves in the peripheral ones, thereby suggesting an alternating opening/closing behaviour.  
 

 
Figure 3. Short-term changes in fractional lung aeration in  injured lung, at different PEEP levels.  
 
2. Individual airway narrowing and in noral and injured lung 
 
The same 8 airways were measured per animal and per PEEP level at baseline (n=48, radius (r): 1.7 to 0.21 
mm), and after injury (n=32). Airway narrowing was significantly increased at 3 and 0 cmH2O, after injury 
(Figure 3). Closure was observed at 0 cmH2O in 2/48 (4.2 %; r: 0.35±0.08 mm at PEEP12) airways at 
baseline and 5/32 (15.6 %; r: 0.28±0.09 mm) airways after injury. The mean slope of CSaw vs. PEEP was 
significantly increased after injury (0.072±0.012 vs. 0.062±0.012, p<0001). We found a significant relation 
between narrowing and airway caliber at PEEP12 in injured, but not in normal lung (R2=0.67, p<0.001). A 
ΔP of 12 cmH2O produced significantly larger strain after injury: 0.65±0.19 vs. 0.52±0.16 (p=0.0018). 
Phase-contrast CT imaging allowed in vivo assessment of individual airway behavior in normal and injured 
lung. Furthermore, the closing pressure and compliance of the studied airways could be estimated  in vivo 
(Figure 4), and are valuable in producing a computational model of the airway tree under mechanical 



ventlation, which is currently underway. These results demonstrate that the propensity for airway closure is 
increased in lung injury. Furthermore, similar static airway pressure changes produce significantly larger 
strain in the airways of injured lung.  
 
 
 
 
 
 
 
 
 
3. Recruitment and distension during mechanical ventilation 
 
Figure 4.  Relative changes in airway caliber vs. airway pressure in normal (A) and injured lung (B); mean respiratory 
system pressure at airway closure in noral and injured lung (C).  
 
3. Alveolar recruitment and distension during mechanical ventilation 
 
With increasing lung volume, SA increased in both healthy and injured lung. While NA was curvilinear with 
a peak at 6 cmH2O (PeakNA), it steadily increased in injured lung (Figure 5). The SA/NA ratio in healthy 
lung was lower at PEEP<PeakNA than at PEEP>PeakNA. The SA/NA ratio in injured lung had a non-
uniform behavior among the different animals.  This analysis shows that in healthy conditions at low lung 
volume the predominant effect of increasing lung volume (such as during inspiration) was recruitment of 
airspaces. After reaching a peak, the surface area of already open airspaces increased. In injured lung, a 
marked mechanical inhomogeneity was found where recruitment and distension followed different patterns 
in individual animals, reflecting various degreas of mechanical instability, likely due to the different severity 
of injury.   

 
Figure 5.  Perimeter, Numerosity and Surface area of lung airspaces, computed at different PEEP levels, during 
healthy conditions and after Ventilator Induced Lung Injury (VILI). 
 
Conclusions: Our data demonstrate that : 1) a substantial cyclic opening and closing of terminal bronchioles 
and of alveoli, in contrast to the healthy lung where this phenomenon was absent; 2) a positive end-
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expiratory pressure up to 12 cmH2O, commonly used clinically in ARDS, reduced but did not entirely 
prevent this phenomenon. These findings are significant and further current understanding of the mechanisms 
leading to VILI in the mechaniclly ventilated lung. Further study will focus on imaging pulmonary acini at 
higher spatial resolutions in vivo. 
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