ESRF	Experiment title: Monitoring bio-inspired cuboidal Co4O4 water oxidation catalysts at work with XAS techniques	Experiment number: 01-01-961
Beamline:	Date of experiment:	Date of report:
BM01b	from: Oct $29^{\text{th}} 2014$ to: Nov $3^{\text{rd}} 2014$	25.02.2015
Shifts:	Local contact(s): Dr. Hermann Emerich	
12		
Names and affiliations of applicants (* indicates experimentalists):		
*Kim von Allmen, University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich,		
Switzerland		
*Fabio Evangelisti, University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich,		
Switzerland		
*Roger Jacot, University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich,		
Switzerland		
*Dr. Rene More, University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland		

Prof. Dr. Greta Patzke, University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Report:

Photocatalytic watersplitting is an elegant way to feed the growing global energy demand with green and sustainable fuels. ^[1] However, the water oxidation half-reaction remains as a four electron process the bottleneck in the overall catalytic cycle. We investigated biometric

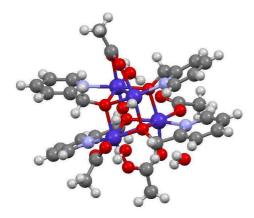
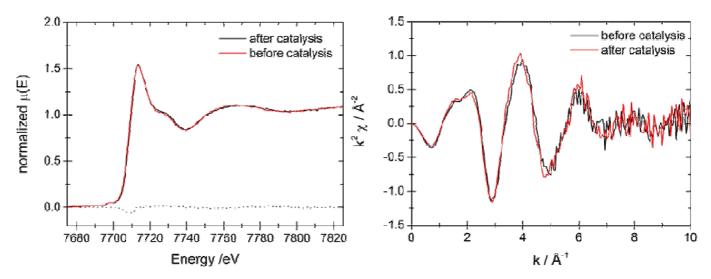



Fig. 1. Molecular structure of the water oxidation catalyst Co_4O_4 .

cuboidal water oxidation catalyst (Co_4O_4 , $[Co_4(hmp)_4(OAc)_4(H_2O)_2]$, hmp = 2-Methylhdroxypyridine, OAc = acetyl) (Fig 1.).^[2]

An average valance state of +2 could be estimated for Co_4O_4 in the catalytic solution based on the edge position in respect to known reference standards. The comparison of the XANES region of Co_4O_4 in catalytic solution before and after photocatalysis displays no of the shift edge position and no significant change in the difference spectra (Fig. 2 right). Therefore, any kind of irreversible oxidation of Co_4O_4 during photocatalyst can be excluded.

In line with the nearly identical EXAFS region of Co_4O_4 before and after catalysis (Fig. 2 left), changes in the coordination environment of the Co can be negleted.

Fig. 2. Left: XANES region and difference spectrum of Co_4O_4 before and after catalysis. Right: EXAFS region of 1 before and after catalysis plotted in K-space.

References:

- [1] H. Lv, Y. Geletii, C. Zhao, J. W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D. G. Musaev, C. L. Hill, *Chem. Soc. Rev.*, 2012, 41, 7572.
- [2] F. Evangelisti, R. Güttinger, R. Moré, S. Luber, G.R. Patzke, *J Am. Chem. Soc.*, 2013, 135, 18734.