INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Experiment Report Form

ESRF	Experiment title: Au supported nanoparticles for selective alcohols oxidation: an XAS/DRIFT/MS study of the synthesis and Au-PVA anchoring process	Experiment number: CH4234
Beamline : ID24	Date of experiment: from: 08 July 2015 at 08:00 to: 14 July 2015 at 08:00	Date of report : 01/03/2015
Shifts: 18	Local contact(s): Giovanni Agostini	
Names and affiliations of applicants (* indicates experimentalists):		

Names and affiliations of applicants (* indicates experimentalists):

Manzoli Maela*, Università degli Studi di Torino, Dipartimento di Chimica, Via Pietro Giuria 7, 10125 Torino (IT).

Agostini Giovanni*, ESRF, rue Jules Horowitz B.P 220 FR - 38043 GRENOBLE Cedex.

Villa Alberto*, Università degli Studi di Milano, Department of Chemistry Via Golgi 19, 20133 Milano (IT)

Vindigni Floriana*, Università degli Studi di Torino Dipartimento di Chimica, Via Pietro Giuria 7, 10125 Torino (IT).

Report:

Energy dispersive beamline ID24 was used for a first attempt to investigate the nucleation process of metal nanoparticles at ms time resolution. The experiment was performed with the stopped-flow/UV-Vis/EDE facility of ID24, which in turn was synchronised at the millisecond regime.

The experiment was porfermed on Au L3 edge (11919 eV), and Pd K edge (24350 eV) and a Stop Flow Cell available at ID24 was employed.

Accoring to Scheme 1, a typical experiment involved the preparation of two water solutions (S1 and S2) to be mixed in the cell: the former containing the Pd precursor, $Na_2PdCl_4 \cdot 2H_2O$, or the Au precursor, $NaAuCl_4 \cdot 2H_2O$, and the latter with the polyvinil alcohol (PVA) or polyvinylpyrrolidone (PVP) protecting agents. Then S1 and S2 were mixed and the metal/PVA ratio (wt/wt) has been varied in order to evaluate the effect of the protecting agent on the final metal size. The obtained solution S1+S2 (yellow color) will be mixed and after a

delay time mainly determined by the stop flow itself, a water solution containing $NaBH_4$ as reducer (S3, metal/mixture= 1:100 mol/mol) was added and the measurement was carried out.

The experimental conditions, such as the concentration of the solutions, the S1/S2/S3 ratios, the acquisition time etc., were carefully optimised.

An example of typical spectra acquired in static conditions at the Pd K edge (24350 eV) is shown in Figure 2, section a, whereas a typical output of a kinetic measure is reported in section b of the same figure.

The same kind of acquired data obtained by monitoring the Au L3 (11919 eV) is shown in Figure 3.

Figure 2. (Left) Spectra collected at the Pd K edge (24350 eV) of the S1 solution containing the Pd precursor (blue curve) and of the S1+S2 solution with PVP as protecting agent (red curve); (Right) Kinetic after the addition of S3 containing the reducer to S1+S2.

Figure 2. (Left) Spectra collected at the Au L3 edge (11919 eV) of the S1 solution containing the Au precursor (blue curve) and of the S1+S2 solution with PVP as protecting agent (red curve); (Right) Kinetic after the addition of S3 containing the reducer to S1+S2.

Despite the problems encountered due to the formation of bubbles after the addition of the S3 solution containing NaBH₄, these data demonstrate the technical feasibility of the experiment: the kinetics were determined for both Au and Pd nanoparticles in controlled experimental conditions.