| HELMHOLTZ<br>ZENTRUM DRESDEN<br>ROSSENDORF<br>ROBL-CRG                                                                                          | <b>Experiment title:</b><br>Structural incorporation of $Cm^{3+}$ in $La_{1-x}$<br>$Gd_xPO_4$ (x = 0, 0.2, 0.5, 0.8, 1) monazites | Experiment number: 20-01-771 |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|
| Beamline:                                                                                                                                       | Date of experiment:                                                                                                               | Date of report:              |  |  |  |  |  |
| BM 20                                                                                                                                           | from: 24.02.2016 to: 26.02.2016                                                                                                   |                              |  |  |  |  |  |
| Shifts:                                                                                                                                         | Local contact(s):                                                                                                                 | Received at ROBL:            |  |  |  |  |  |
| 6                                                                                                                                               | Andreas Scheinost                                                                                                                 |                              |  |  |  |  |  |
| Names and affiliations of applicants (* indicates experimentalists):                                                                            |                                                                                                                                   |                              |  |  |  |  |  |
| Nina Huittinen<br>Institute of Resource Ecology<br>Helmholtz-Zentrum Dresden-Rossendorf                                                         |                                                                                                                                   |                              |  |  |  |  |  |
| Stefan Neumeier<br>Institute of Energy and Climate Research, Nuclear Waste Management and Reactor<br>Safety (IEK-6)<br>Forschungszentrum Jülich |                                                                                                                                   |                              |  |  |  |  |  |

## **Report:**

In the present work, the structural incorporation of the minor actinide  $Cm^{3+}$  in a series of synthetic  $La_{1-x}Gd_xPO_4$  (x = 0, 0.2, 0.5, 0.8, 1) monazite ceramics has been studied by combining two spectroscopic methods, time-resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS).

Our laser spectroscopic studies indicate the presence of only one, very well-defined, crystalline environment for the incorporated  $\text{Cm}^{3+}$  cation in the La and Gd monazite end-members. The situation changes when examining the solid solution compositions (La<sub>0.8</sub>Gd<sub>0.2</sub>PO<sub>4</sub>, La<sub>0.5</sub>Gd<sub>0.5</sub>PO<sub>4</sub>, and La<sub>0.2</sub>Gd<sub>0.8</sub>PO<sub>4</sub>), where the recorded luminescence data indicate a decrease of the short-range order in these solid solutions. The laser-spectroscopic studies were complemented with Cm<sup>3+</sup> L<sub>3</sub> edge XAFS investigations. Due to the very low Cm<sup>3+</sup> doping of 50 ppm in the solid matrix requiring very long XAFS data collection times, only the Cm<sup>3+</sup>-doped LaPO<sub>4</sub>, La<sub>0.5</sub>Gd<sub>0.5</sub>PO<sub>4</sub>, and GdPO<sub>4</sub>



Fig. 1. Cm L<sub>3</sub>-edge XAFS spectra of the Cm-doped monazite ceramics.

compositions were measured. The fitting of the first coordination shell of our Cm L<sub>3</sub> XAFS data (Fig. 1) for LaPO<sub>4</sub>,  $La_{0.5}Gd_{0.5}PO_4$ , and  $GdPO_4$ , indicate a contraction of the  $Cm \cdots O$  distance when going from the larger LaPO<sub>4</sub> monazite toward  $GdPO_4$  (Table 1). The fitting results also show that the Debye-Waller (DW,  $\sigma^2$ ) factor substantially decreases from 0.0090  $\text{\AA}^2$  in LaPO<sub>4</sub> to 0.0063  $\text{\AA}^2$  in GdPO<sub>4</sub>, while an increase is observed for the solid-solution composition (0.012 Å<sup>2</sup>).

The differences in the DW factors between the monazite end-members indicate a larger disorder in the larger LaPO<sub>4</sub> host, presumably do to the larger mismatch of host and dopant radii causing a larger distortion of the monazite crystal lattice around the trivalent dopant ( $\Delta r_{La-Cm} = 7$  Å) in comparison to GdPO<sub>4</sub> ( $\Delta r_{Gd-Cm} = -3.9$  Å). The large DW factor obtained for La<sub>0.5</sub>Gd<sub>0.5</sub>PO<sub>4</sub> in comparison to the monazite end-members is in concordance with the laser spectroscopic data, showing an increasing disordering of the monazite crystal structure for the solid solution composition. These results are in very good agreement with already published data for Eu<sup>3+</sup> incorporation in monazite solid solution compositions could be assigned to broadened distribution of Eu…O bond distances in these solids.

| Sample                 | Path | CN | <b>R</b> [Å] | $\sigma^2 [\text{\AA}^2]$ | $\Delta E_0 [eV]$ | ${S_0}^2$ | χ <sub>res</sub> [%] |
|------------------------|------|----|--------------|---------------------------|-------------------|-----------|----------------------|
| LaPO4                  | Cm-O | 9  | 2.46         | 0.0090                    | 7.3               | 0.80      | 19.2                 |
| $La_{0.5}Gd_{0.5}PO_4$ | Cm-O | 9  | 2.43         | 0.0120                    | 8.8               | 0.57      | 12.6                 |
| GdPO <sub>4</sub>      | Cm-O | 9  | 2.42         | 0.0063                    | 8.8               | 0.50      | 16.5                 |

<sup>1</sup>N. Huittinen et al. (2017) J. Nucl. Mater. 486, 148–157