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Figure 1: Comparison of experimental (solid) and 

theoretical TD-DFT Fe K-edge spectra (dashed) (1 – 4). 

Theoretical spectra were shifted by 151.3 eV and 

broadened by 1.5 eV (FWHM). 

 

Scheme 1: Used model complexes. 

 

 

Report: 
Over the last years several authors showed, that VtC-XES is able to probe the 

nature of ligand bonds and allows to distinguish different kinds of ligands.[1-5] 

In case of hydrogenases it has been shown that hydride ligands contribute to 

significant changes in the VtC-XES spectra.[6-8] In order to put the mentioned 

preliminary hints about the influence of hydrogen ligands on a solid 

foundation and to establish the methodical combination of VtC-XES and 

HERFD-XANES for the investigation of metal-bound hydrides in catalytic 

processes, we chose the iron-catalyzed hydrosilylation reaction as important 

example. The two hydride complexes [Fe(CO)(dppp)H(NO)] (3) and 

[Fe(CO)H(NO)(PPh3)2] (4) are effective catalysts for hydrogen formation via 

dehydrogenative silylation of alcohols.[9]  
Scheme 1 shows the optimized structures of the compounds investigated. The 

catalytically active species (3) and (4) and the non-hydride refrences 

[Fe(dppe)(NO)2] (1) and [Fe(NO)2(PPh3)2] (2).  

In order to investigate the impact of iron-hydride antibonding states on the 

overall LUMO levels, HERFD-XANES spectra were recorded. 

The first pre-edge peak maximum A possesses the same energy 

for 1 and 2 (fig. 1). Compared to this, the overall intensity of A 

decreases in 3 and 4, while the intensity at the high-energy sides 

increases (compared to 1 and 2). Obviously feature A doesn´t 

show a true shift in 3 and 4, more it is superimposed by an 

additional transition (fig. 2). In the calculated spectra , the shift 

of A in both hydrides (3, 4) is indicated through excited state 3 

(fig. 2), which is significantly shifted to higher energies 

(compared to 1 and 2). This state is described as a combination 

of different orbital pairs. Nevertheless in both hydride 

compounds (3, 4) the main components are transitions to 

acceptor orbitals which reflect the antibonding combination of 

Fe 3d and the H 1s orbital. 
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Figure 2: Comparison of experimental (solid) and theoretical TD-DFT Fe K-edge spectra (dashed) (left: 1 and 3, 

right: 2 and 4)).  

 

Figure 3: Comparison of experimental (solid) and 

theoretical DFT Fe VtC spectra (dashed). 

 

In order to investigate 

the influence of Fe-H 

bonding states on the 

HOMO levels, VtC 

spectra of 1 – 4 were 

collected (fig. 3). In the 

area of C significant 

intensity changes can be 

observed on hydride 

coordination (3, 4). 

However, there are 

significant differences 

between both hydrides 

(3, 4) in the area of C, 

which may arise from 

their varying 

coordination geometry. 

In 3 a rise in intensity at 

the low-energy side of D 

is observed (compared to 1, 2 and 4). While in 4 a rise in intensity 

at the high-energy side of B is observed (compared to 3). The 

increased intensity in the area of feature C (3 and 4), respectively 

the broadening of feature D in 3 to the low-energy side in the 

calculated VtC emission spectra, can be attributed to donor 

orbitals with significant hydride density (fig. 4). In 3 the donor 

orbital describes the bonding interaction of the Fe 3dz² (Fig. 4, 3a) 

with the H 1s. This explains the broadening and shift of feature D 

to the low-energy side. For geometric reasons, 4 exhibits a more 

complicated interaction of the in-plane located hydride ligand, an 

additional interaction with both P atoms. 4b describes the 

interaction of the H 1s and Fe 3d (fig. 4), which illustrates the 

intensity rise in the area of C. 4a describes the interaction of the H 

1s with P 3p orbitals of 

both phosphine ligands 

(fig. 4). This clearly 

explains the increased 

intensity and shift of B to 

the high-energy side of 4 

compared to 3.  

A detailed investigation 

of a series of different 

low-valent iron 

complexes (1, 2) and 

their hydride analogues 

(3, 4) has been carried 

out using VtC-XES and 

HERFD-XANES. The 

sensibility of both 

methods to the M-H 

interaction has been 

shown. VtC-XES and 

HERFD-XANES in combination with DFT (XES) respectivley TD-DFT (XANES) calculations are 

promising tools to study hydride species in catalysis. 

 

Figure 4: Comparison of 2 (top) and 4 (bottom) (left), respectively 1 (top) and 3 (bottom) (right), experimental 

(grey) and theoretical DFT Fe VtC spctra (blue).  
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