

ESRF	Experiment title: Enhanced activity and stability of ALD-immobilized #- Ga ₂ O ₃ ex-situ tailored nanoparticles for propane dehydrogenation: in situ XAS and XRD study	Experiment number: A31-1-33
Beamline :	Date of experiment:	Date of report:
BM31	from: 20 July 2017 to: 25 July 2017	06.09.2023
Shifts:	Local contact(s):	Received at ESRF:
	Wouter van Beek	
Names and affiliations of applicants (* indicates experimentalists):		
Castro Fernandez Pedro		
Dr. Paula Macarena Abdala* [†]		
Prof. Christoph Müller [†]		
[†] Laboratory of Energy Science and Engineering, Institute of Energy Technology,		
ETH Zurich, Leonhardstrasse 27, 8092 Zurich, Switzerland		

Report:

Abstract

Metastable γ -Ga₂O₃ nanocrystals have gained growing interest for a broad range of technological applications. However, a precise description of their atomic structure and changes thereof during thermally induced transformations that is required to understand and fully exploit their physical and chemical properties is still lacking. In this work, we investigate the structure of γ -Ga₂O₃ nanocrystals (2.5 nm in diameter) obtained via a colloidal synthesis route and their evolution with thermal treatment. To this end, we have applied synchrotron X-ray atomic pair distribution function (PDF) analysis, complemented by ⁷⁴Ga solid-state magic-angle spinning nuclear magnetic resonance (MAS NMR), X-ray absorption spectroscopy (XAS), and electron microscopy. The local structure of the γ -Ga₂O₃ nanocrystals deviates from the average cubic spinel-type structure, revealing a high degree of structural disorder. The average structure of the γ -Ga₂O₃ nanocrystals is described as a defective spinel with gallium sites in tetrahedral and octahedral (Ga₁v and Ga₁v₁) coordination with oxygen

atoms. The modeling of the local structure revealed a low-symmetry distortion of the polyhedra, which are disorderly oriented. The surface structure of the γ -Ga₂O₃ nanocrystals is different from their bulk, whereby Ga_{v1} sites at the outermost layers of the nanocrystals are found in a nonperiodical stacking arrangement with a higher occupancy than in the core, as revealed by high-angle annular dark field imaging scanning transmission electron microscopy (HAADF-STEM). The structural evolution of γ -Ga₂O₃ nanocrystals upon thermal treatment in air was probed by in situ time-resolved PDF. A gradual transformation of the γ -Ga₂O₃ nanocrystals toward the thermodynamically stable β -Ga₂O₃ polymorph occurs at different structural domains at different temperatures. At ca. 300 °C, changes in the local structure showed an increased distortion of the polyhedral units and revealed the appearance of small β -Ga₂O₃ domains (ca. <1 nm), while the bulk phase transformation took place between 550 and 750 °C and was associated with an increase in the coherence length of the β -Ga₂O₃ phase. ¹

 α -Ga₂O₃, β -Ga₂O₃, and γ -Ga₂O₃ as well as the silica-supported catalysts γ -Ga₂O₃/SiO₂, β - Ga_2O_3/SiO_2 , and $Ga(NO_3)_3$ -derived Ga/SiO_2 were prepared, characterized, and evaluated for propane dehydrogenation (PDH) at 550 °C. The coordination environment and acidity of surface sites in stand-alone and SiO₂-supported Ga₂O₃ catalysts were studied using FTIR, ¹⁵N dynamic nuclear polarization surface-enhanced NMR spectroscopy (15N DNP SENS), and DFT modeling of the adsorbed pyridine probe molecule. The spectroscopic data suggest that the Lewis acidic surface Ga sites in γ -Ga₂O₃ and β -Ga₂O₃ (the latter obtained from colloidal nanocrystals of y-Ga₂O₃ via thermal treatment at 750 °C) are similar, except that β - Ga_2O_3 contains a larger relative fraction of weak Ga_{3+} Lewis acid sites. In contrast, α -Ga₂O₃ features mostly strong Lewis acid sites. This difference in surface sites parallels their difference in catalytic activities: i.e., weak Lewis acid surface sites are more abundant in β- Ga_2O_3 relative to α - Ga_2O_3 and γ - Ga_2O_3 and the increased relative abundance of weak Lewis acidity correlates with a higher initial catalytic activity in PDH, 0.41 > 0.28 > 0.14 mmol C_3H_6 m⁻² (Ga₂O₃) h⁻¹ at 550 °C, for respectively β -, α -, and γ -Ga₂O₃ with initial propene selectivities of 86, 83, and 88%. Dispersion of γ -Ga₂O₃ or β -Ga₂O₃ on a silica support introduces strong as well as abundant weak Brønsted acidity to the catalysts, lowering the PDH selectivity. The γ -Ga₂O₃/SiO₂ catalyst was slightly more active than β -Ga₂O₃/SiO₂ in PDH (Ga normalized activity) with initial propene formation rates of 11 and 9 mol C₃H₆ mol Ga⁻¹ h⁻ (sel = 76 and 73%, respectively). However, these catalysts deactivated by ca. 55% within 100 min time on stream (TOS) due to coking. In contrast, Ga/SiO₂, with mostly tetracoordinated surface Ga sites and abundant, strong Brønsted acid sites, gave a lower activity and selectivity in PDH (3.5 mol C₃H₆ mol Ga⁻¹ h⁻¹ and 49%, respectively) but showed no deactivation with

TOS. DFT calculations using a fully dehydroxylated oxygen-deficient model β -Ga₂O₃ surface show that tetra- and pentacoordinated Ga Lewis acid sites bind pyridine more strongly than tricoordinated Ga sites and a higher relative fraction of strong Lewis acid sites correlates with increased coking. Overall, our results indicate that weakly Lewis acidic, tricoordinated Ga³⁺ sites are likely driving the superior PDH activity of β -Ga₂O₃.²

^{1.} Castro-Fernández, P.; Blanco, M. V.; Verel, R.; Willinger, E.; Fedorov, A.; Abdala, P. M.; Müller, C. R., Atomic-Scale Insight into the Structure of Metastable γ -Ga₂O₃ Nanocrystals and their Thermally-Driven Transformation to β -Ga₂O₃. *J. Phys. Chem. C* **2020**, *124* (37), 20578-20588.

^{2.} Castro-Fernández, P.; Mance, D.; Liu, C.; Moroz, I. B.; Abdala, P. M.; Pidko, E. A.; Copéret, C.; Fedorov, A.; Müller, C. R., Propane Dehydrogenation on Ga₂O₃-Based Catalysts: Contrasting Performance with Coordination Environment and Acidity of Surface Sites. *ACS Catalysis* **2021**, *11* (2), 907-924.