European Synchrotron Radiation Facility

INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Experiment Report Form

ESRF	Experiment title: Biogenic calcite single crystal in-situ annealing in 3D: insights into evolutionary optimization of the brittle star eye	Experiment number : EV-279
Beamline: ID16B	Date of experiment: from: 10 November 2017 to: 13 November 2017 at 08:00	Date of report : 19/02/2020
Shifts: 6 Names and af	Local contact(s): Julie Villanova filiations of applicants (* indicates experimentalists):	Received at ESRF:

Main proposer: Dr. ZASLANSKY Paul*, Laboratory Charite - Universitaetsmedizin Berlin Department of

Operative Dentistry Assmannshauser Str. 4-6 DE - 14197 BERLIN

Co-proposers: Prof. POKROY Boaz*, Laboratory Technion - Israel Institute of Technology Department of Materials Engineering Technion City IL - 32000 HAIFA

Mr. BLOCH Leonid, Laboratory ESRF 71 avenue des Martyrs CS 40220 FR - 38043 GRENOBLE Cedex 9

Report:

The work performed during this beamtime was published in: Seknazi, E., Kozachkevich, S., Polishchuk, I., Stein, N. B., Villanova, J., Suuronen, J. P., Dejoie, C., Zaslansky, P., Katsman, A., & Pokroy, B. (2019). From spinodal decomposition to alternating layered structure within single crystals of biogenic magnesium calcite. *Nature communications*, *10*(1), 1-9.

Abstract:

As organisms can form crystals only under ambient conditions, they demonstrate fascinating strategies to overcome this limitation. Recently, we reported a previously unknown biostrategy for toughening brittle calcite

crystals, using coherently incorporated Mg-rich nanoprecipitates arranged in a layered manner in the lenses of a brittlestar, *Ophiocoma wendtii*. Here we propose the mechanisms of formation of this functional hierarchical structure under conditions of ambient temperature and limited solid diffusion. We propose that formation proceeds via a spinodal decomposition of a liquid or gel-like magnesium amorphous calcium carbonate (Mg-ACC) precursor into Mg-rich nanoparticles and a Mg-depleted amorphous matrix. In a second step, crystallization of the decomposed amorphous precursor leads to the formation of high-Mg particles-rich layers. The model was supported by our experimental results in synthetic systems. These new insights have significant implications for fundamental understanding of the role of Mg-ACC material transformation during crystallization and its subsequent stability.