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Abstract 

Elucidating the structure of neuronal networks provides a foundation for understanding how the nervous system processes 
information to generate behavior. Despite technological breakthroughs in visible light and electron microscopy, imaging 
dense nanometer-scale neuronal structures over millimeter-scale tissue volumes remains a challenge. Here, we 
demonstrate that X-ray holographic nano-tomography is capable of imaging large tissue volumes with sufficient 
resolution to disentangle dense neuronal circuitry in Drosophila melanogaster and mammalian central and peripheral 
nervous tissue. Furthermore, we show that automatic segmentation using convolutional neural networks enables rapid 
extraction of neuronal morphologies from these volumetric datasets. The technique we present allows rapid data 
collection and analysis of multiple specimens, and can be used correlatively with light microscopy and electron 
microscopy on the same samples. Thus, X-ray holographic nano-tomography provides a new avenue for discoveries in 
neuroscience and life sciences in general.  

 
Introduction 

Our understanding of the nervous system is built on 
our knowledge of the structure and connectivity of neurons. 
However, unraveling their structure is a daunting technical 
challenge because neuronal axons and dendrites are small 
in diameter (~20-1000 nm) and traverse long distances 
(millimeters or more). With current technology, we 
generally can either image a sparse subset of neurons with 
a large field of view (FOV) through fluorescent labeling 
and visible light microscopy (LM) or comprehensively 
map small regions via electron microscopy (EM). 
Advancing our understanding of neuronal networks will 
require imaging modalities that can simultaneously 
achieve high resolution and large FOV. 

 At present, LM and magnetic resonance imaging 
techniques can image large regions, but not with sufficient 
resolution to densely resolve neuronal processes. Recent 
advances in super-resolution imaging have greatly 
improved resolving power for LM (Gao et al., 2019; 
Heintzmann and Gustafsson, 2009; Hell, 2007; Huang et 
al., 2009); however, these techniques rely on sparse 
labeling with fluorescent probes, such that only a fraction 
of neurons are visible. On the other hand, all neurons can 
be detected locally in EM micrographs, but collection of 

large volumes encompassing entire circuits requires 
elaborate sample and data processing, yielding major 
scaling challenges (Briggman and Bock, 2012; 
Helmstaedter et al., 2013; Lee et al., 2016; Xu et al., 2017; 
Zheng et al., 2018). Thus, despite rapid and transformative 
advances in both LM and EM, a spatial resolution and 
FOV gap remains.  

Hard X-rays are an attractive illumination probe for 
imaging thick tissue samples with fine spatial resolution 
due to their high penetration power and sub-nanometer 
wavelength. Previously, attenuation-based X-ray micro-
tomography with a synchrotron source enabled 
visualization of metal stained, sparse wiring in the 
Drosophila brain (Mizutani et al., 2013). The advent of X-
ray phase-contrast techniques enabled imaging of both 
stained and unstained brain tissue at micrometer and sub-
micrometer scales (Cedola et al., 2017; Dyer et al., 2017; 
Fonseca et al., 2018; Khimchenko et al., 2018; Massimi et 
al., 2019; Schulz et al., 2010; Shahmoradian et al., 2017; 
Töpperwien et al., 2018). However, until now, X-ray 
microscopy has not achieved the necessary resolving 
power to enable dense reconstruction of neuronal 
morphologies. 

Here we present a pipeline based on X-ray holographic 
nano-tomography (also called X-ray nanoholotomography, 
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or XNH) that enables imaging of large volumes of neural 
tissue with sufficient resolution to extract the 
morphologies of densely packed neurons without specific 
labeling. We combined a highly focused and brilliant hard 
X-ray nano-probe (da Silva et al., 2017), an advanced 
nano-positioning system, cryogenic imaging, new sample 
preparation protocols, and enhanced phase retrieval 
approaches to achieve significant improvements in image 
quality. We show that individual neurons can be manually 
traced through XNH datasets of central and peripheral 
nervous tissue of the fruit fly Drosophila melanogaster 
and mouse. In addition, we use a 3D U-NET convolutional 
neural network (CNN) to automatically segment dendrites 
and axons from the XNH data. Moreover, we demonstrate 
that XNH is compatible with cell type-specific genetic 
labeling techniques as well as post-hoc EM of the same 
samples. These results demonstrate that XNH is a versatile 
volumetric imaging modality for biological microscopy, 
which can be combined with LM and EM in correlative 
workflows to accelerate our understanding of neuronal 
networks. 

Results 

XNH imaging of central and peripheral nervous 
systems  

To explore the potential of XNH for imaging neuronal 
morphologies, we imaged samples of mouse cortex as well 
as the brain, ventral nerve cord (VNC), and leg of adult 
Drosophila. We varied the reconstructed isotropic voxel 
size (edge length) from 30 nm to 120 nm, yielding FOVs 
(edge length of square cylindrical volume) from 60 µm to 
240 µm (96 µm to 384 µm with extended FOV, see 
Supplementary Table 1) for each dataset. Sample sizes 
ranged from whole Drosophila brains (300 µm × 200 µm 
× 700 µm) to blocks of mouse cortex (1 mm × 0.5 mm × 2 
mm). Samples were prepared using standard protocols for 
EM (Hua et al., 2015; Zheng et al., 2018) and mounted 
onto aluminum cylindrical pins for imaging (Fig. 1a, inset).  

XNH imaging was conducted at the nano-imaging 
beamline ID16A at the European Synchrotron (ESRF). For 
image acquisition, the samples were positioned 
downstream of the focal spot of a highly brilliant X-ray 
beam (Fig. 1a). After traversing the sample, the 
propagating beam generated self-interference patterns, (i.e. 
holograms) that were recorded on a lens-coupled CCD 
detector about 1.2 m downstream of the sample (Fig. 1b). 
For each dataset, four tomographic scans (rotations of the 
sample over 180º) were recorded at different focus-to-
sample distances (Fig. 1a), and processed together via a 
phase retrieval algorithm to obtain angular phase maps of 

the sample (Fig. 1c) (Cloetens et al., 1999; Mokso et al., 
2007; Yu et al., 2018). Lastly, a 3D image volume of the 
tissue was generated from the angular phase maps by 
tomographic reconstruction using filtered back-projection 
(Mirone et al., 2014).  

Figure 1d-e shows a tomographic slice and a 3D 
rendering of an XNH scan capturing the central brain of an 
adult Drosophila (120 nm voxels) (Supplementary Video 
1). At this resolution, large individual neuronal processes 
can be resolved (Fig. 1d, inset, Fig. 1e, orange tracts). 
Figure 1f shows a volume rendering of a large FOV XNH 
scan from mouse cortex (100 nm voxels). In this dataset, 
we can trace large dendrites, in particular the apical 
dendrites of pyramidal neurons. Figure 1g shows a virtual 
slice from a high-resolution mouse cortex scan (30 nm 
voxels) (Supplementary Video 2). At this resolution, many 
ultrastructural features are resolved including 
mitochondria, endoplasmic reticulum, dendrites, 
myelinated and unmyelinated axons (Fig. 1g, insets).  

To quantify the spatial resolution of XNH image 
volumes, we utilized Fourier Shell Correlation (FSC) 
(Harauz and van Heel, 1986). While the pixel size is 
directly determined by the geometrical magnification 
M =  (𝑧𝑧1 + 𝑧𝑧2) 𝑧𝑧1⁄  (Fig. 1a), the actual resolution depends 
on multiple factors, including the spot size and coherence 
properties, the mechanical stability of the system, the 
detection system, the sample composition and the image 
reconstruction approach. We found that the measured 
spatial resolutions in both mouse and Drosophila data vary 
between two and four times the voxel size, depending on 
the sample characteristics and acquisition parameters (Fig. 
1h, Supplementary Table 1, Fig. S1a-c). Reducing the 
voxel size improved image resolution down to the smallest 
voxel size we tested (30 nm), but the relative resolution 
(measured resolution divided by voxel size) was best at 
larger voxel sizes (Fig. S1a). This is likely due to larger 
voxel sizes corresponding to reduced radiation dose and 
less tissue present outside the FOV (see Discussion). 

Although FSC is a commonly utilized method to 
quantify resolution in many imaging modalities including 
X-ray imaging, its implementation is somewhat 
controversial (Heel and Schatz, 2017; van Heel and Schatz, 
2005). Therefore, we used an independent method based 
on identification of features with sharp edges to verify our 
FSC resolution measurements (Mokso et al., 2007). This 
edge-fitting method produced resolution measurements 
consistent with those measured via FSC (Fig. S1d-f), 
suggesting that the FSC algorithm produces accurate 
measures of resolution that can be interpreted as the 
fidelity of sharp edges or small features in the image 
volumes.  
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Correlative X-ray imaging with EM and genetic 
labeling 

To verify that XNH images faithfully reproduce the 
ultrastructure of biological samples, we collected thin-
sections of samples after XNH imaging and imaged the 
same regions at higher lateral resolution with EM. We 
found that corresponding EM and XNH image data from 
the Drosophila leg nerve (50 nm pixels, Fig. 2a, 
Supplementary Video 3) and mouse cortex (100 nm pixels, 
Fig. 2b) have very similar characteristics, with membranes 
and mitochondria appearing as the most prominent dark 
features. Most of the neurites in the EM image are also 
resolved in XNH, and only the smallest processes are not 
resolved with XNH. We also verified that fine 
ultrastructure features, such as membranes, synaptic 
vesicles and post-synaptic densities, are preserved in the 
EM images after XNH imaging (Fig. 2b, inset). This 
demonstrates that our XNH sample preparation and 
imaging approach are compatible with post-hoc, serial 
section EM, so that an XNH imaged volume can be 
imaged at higher resolution with EM, for identification of 
synapses or other fine ultrastructural features.  

Based on the similarity between XNH and EM images, 
we reasoned that cell type-specific labeling strategies 
previously developed for EM could be adapted for XNH. 
EM-visible labeling of specific cell types has been 
achieved using peroxidases that deposit dense precipitates 
inside the organelles of genetically-defined cell 
populations (Atasoy et al., 2014; Zhang et al., 2019). We 
developed a fly reporter line that targets the peroxidase 
APEX2 (Lam et al., 2015) to the nuclei of GABAergic 

neurons (see Methods). We show that APEX2 can 
successfully be detected in these flies with XNH imaging 
and that labeled cells can be automatically segmented 
using a Random Forest classifier with minimal training 
(Fig. 2c) (Sommer et al., 2011). These results demonstrate 
that the nuclear-APEX2 reporter line enables identification 
of genetically-defined cell populations within XNH images 
and suggest more generally that labeling strategies 
developed for EM can also be detected with XNH.  

Millimeter-scale XNH imaging of a Drosophila leg at 
single-neuron resolution 

To image large regions with complex topology at high 
resolution, we stitched multiple, overlapping XNH scans 
to image the majority of a Drosophila leg (coxa, trochanter, 
femur, and tibia segments) and the associated first thoracic 
(T1) neuromere in the VNC (Fig. 3a,b). This dataset 
consisted of 12 individual scan volumes at pixel sizes 
between 50 and 200 nm, including a length of the main leg 
nerve totaling more than 1.4 mm (Fig. 3c,d, 
Supplementary Table 2, Supplementary Video 4). Because 
each XNH scan takes about 4 hours to acquire, this entire 
dataset was collected in less than 2 days. The 12 scans 
were aligned together to produce a continuous dataset 
encompassing the leg and the neural circuit in the VNC 
that controls this leg’s movements (Fig. 3c). 
Representative 2D slices (Fig. 3e-i) show that many axons 
in the main leg nerve can be clearly resolved and 
reconstructed. Because the surrounding musculature, 
exoskeleton, and sensory structures are also visible, 
individual neurons can be mapped from their peripheral 
sources and targets back to the VNC.  

  

Figure 1: X-ray Holographic Nano-Tomography (XNH) Technique and Characterization. (a) Upper inset: a Drosophila brain 
(blue arrow) embedded in resin and mounted on a pin for imaging. Diagram: schematic of imaging setup. The X-ray beam from the 
synchrotron is focused to a spot using two mirrors, and traverses the sample before hitting the detector. (b) Holographic projections (a 
result of free-space propagation of the coherent X-ray beam) are recorded for each angle as the sample is rotated up to 180°. (c) Phase 
projections are calculated using phase retrieval algorithms by computationally combining 4 holographic projections of the sample at 
different distances from the beam focus. Color scale indicates phase in radians. (d) A slice through the reconstructed 3D image 
volume (120 nm voxels), calculated using tomographic reconstruction. Inset right: detail view, showing individual neurons (bright 
objects). (e) 3D rendering of XNH volume of the central fly brain. The tissue outline is shown in blue, while large neurons and trachea 
are highlighted in orange. (f) 3D rendering of an XNH volume of mouse cortex (100 nm voxel size). Inset right: virtual slice resolving 
individual cell bodies and large dendrites. (g) Virtual slice through a mouse cortex XNH volume with 30 nm voxels. Insets: detail 
view resolving ultrastructural features including mitochondria (magenta arrowheads), endoplasmic reticulum (magenta arrows), 
nucleolus (magenta asterisk), myelinated axons, and dendrites (blue arrowheads). (h) Measured resolution for different scans plotted 
as a function of pixel size and field of view (FOV). Values for resolution were obtained using Fourier Shell Correlation (see Methods, 
Supplementary Table 1). 
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Figure 2: Ultrastructural Details and Genetic Labeling in X-ray Nano-Holography Images. (a) Comparison of corresponding X-
ray (50 nm pixels) and TEM (12 nm pixels, 100 nm thick section) images taken from the Drosophila main leg nerve. Despite the 
difference in resolution, most of the motor and sensory axons are resolved in the X-ray image. (b) Comparison of corresponding X-ray 
(100 nm pixels) and TEM (4 nm pixels, 45 nm thick section) images taken from mouse somatosensory cortex. Inset: detail view of 
EM image showing chemical synapses (arrows) that are well-preserved after XNH imaging. (c) Top: photograph of fly brain with 
GABAergic nuclei labeled with APEX2 (arrows). Middle: XNH images (120 nm pixels, 15 µm thick minimum intensity projection) 
of the same fly brain, showing clusters of dark, APEX2 labeled GABAergic cell nuclei (arrows). Bottom: XNH virtual slice (120 nm 
thick) and output from an automated Random Forest image classifier trained to detect labeled cells (green).  

 
 

Figure 3: Millimeter-scale XNH imaging of a Drosophila leg at single-neuron resolution. (a) Schematic of XNH imaging strategy: 
12 XNH scans were tiled along the front leg (Supplementary Table 2), including the T1 neuromere of the ventral nerve cord (VNC), 
the coxa, trochanter, femur, and tibia segments of the leg. Most scans were recorded at 75 nm pixel size, a resolution at which motor 
axons and large sensory axons can be traced through the leg. (b) Photograph of sample after heavy-metal staining, embedding, and 
mounting for XNH imaging. (c) 3D rendering of scan volume: individual scans were stitched together to form a contiguous volume of 
the leg (see Methods). (d) Computationally unfolded cross-section of the scan volume, following the main leg nerve over 1.4 mm 
from the VNC throughout the coxa, trochanter, femur, and tibia segments. (e) Cross-section through the coxa. Fats, muscles, and 
neurons are clearly visible. (f) Detailed view of nerve within the coxa. The indicated motor neuron is the same neuron as in (h) (g) 
Cross-section through the femur. Asterisk denotes the femoral chordatonal organ, a proprioceptive sensory structure (Mamiya et al., 
2018). (h) Detailed view of nerve within the femur, including a motor axon branching off to innervate a muscle (arrow). (i) Cross-
section through the tibia. Fewer large-diameter motor axons are visible in this cross-section compared to (f) and (h), as most motor 
axons have left the nerve to innervate muscles in more proximal leg segments. 
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Reconstruction of Individual Neuron Morphologies 
 
Until now, tracing of individual neuron morphologies 

from X-ray image data has been only possible through 
sparse labeling (Fonseca et al., 2018; Mizutani et al., 2013; 
Ng et al., 2016; Shahbazi et al., 2018). However, our 
results suggest that XNH image volumes contain sufficient 
signal to noise and spatial resolution to resolve and 
reconstruct dense populations of neurons without specific 
labeling. To test this, we reconstructed individual motor 
and sensory axons in high resolution scans of the 
Drosophila VNC (50 nm pixels, Supplementary Video 3) 
via manual skeletonization, a process where human 
annotators trace a wire-frame model of the neuronal 
processes (Saalfeld et al., 2009; Schneider-Mizell et al., 
2016). A total of 108 neurons were seeded from their 
axons in the front leg nerve and were traced into the VNC 
(Fig. 4a-d). The reconstructed neurons included both 
motor neurons that send their axons into the leg to 
innervate muscles and sensory neurons that send signals 

from sensory organs in the leg to the VNC. We were able 
to trace neurons and capture the major branching patterns 
of their primary axons in the VNC. Based on these 
branching patterns, we were able to classify the neurons 
into several morphological clusters (Fig. 4e) and identify 
the dorsally-branching clusters as motor neurons (Baek 
and Mann, 2009; Brierley et al., 2012) and the ventrally-
branching clusters as sensory neurons (Tsubouchi et al., 
2017). In some cases, we were also able to associate the 
neurons with specific sensory organs, such as the 
campaniform sensilla and femoral chordatonal organs 
(Mamiya et al., 2018). We observed that axons are 
spatially organized in the nerve, such that axons from 
neurons from the same morphological cluster tend to also 
physically cluster together within the nerve (Fig. 4c, inset). 
These results demonstrate that XNH enables 
morphological classification of cell types, providing 
insight into the organizational principles of circuits in the 
central and peripheral nervous systems. 
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Automated Segmentation of Neuronal Morphologies 
using Convolutional Neural Networks 

While manual tracing can produce targeted, high-
quality reconstructions, it can be time-consuming. To 
accelerate neuronal reconstructions, we adapted an 
automated segmentation pipeline developed for EM 
(Funke et al., 2017), and applied it to the XNH image data 
(see Methods). The goal of automated segmentation is to 
assign voxels in the image volume to neurons. Unlike 
skeletonization (Fig. 4), segmentation allows the full 
geometry of the neurons to be reconstructed in 3D. 
Broadly speaking, the pipeline consists of two major steps: 
affinity prediction and agglomeration. In the affinity 
prediction step, a CNN (Fig. 5a) is used to convert the 
image data into an affinity graph, which quantifies locally 
how likely adjacent voxels are to be part of the same 
object (Fig. 5b,c). During the subsequent agglomeration 
step, voxels are first grouped into supervoxels using a 
watershed algorithm, which are then progressively merged 
into larger objects based on the predicted affinities along 
the contact area of adjacent supervoxels. The merging 
procedure is stopped at a user-defined threshold, giving 
rise to the final segmentation (Fig. 5d).  

To assess whether automated segmentation can be 
used with XNH data to reconstruct neuronal morphologies, 
we applied automated segmentation to an XNH image 
volume encompassing the majority of a T1 neuromere and 
part of the main front leg nerve (Fig. 5e, Supplementary 
Video 5). Generally, the morphologies of the segmented 
neurons match the corresponding manual reconstructions, 
demonstrating that automated segmentation can generate 
dense single neuron morphologies from XNH data. 
However, in some instances, different voxels from the 
same neuron are erroneously labeled with different neuron 
IDs (split error) or two different neurons are erroneously 
combined into a single neuron ID (merge error). Such 
errors are also present in segmentations based on EM data, 
and are usually corrected via human proofreading. To 
determine how accurate the automated segmentation is, we 
compared it to manual (voxel-wise) segmentation for small 
test volumes and quantified split and merge errors using 
clustering similarity metrics (Fig. S2a, Supplementary 
Table 3). Comparing these error scores with published 
metrics from EM segmentation studies suggests that this 
automated segmentation workflow works similarly well 
with XNH data as with EM data and can be used to rapidly 
and accurately segment neurons.  
  

 
Figure 4:  Reconstruction of Individual Neuron Morphologies. (a-b) Overview of XNH image volume encompassing the anterior 
half of the VNC and the first segment of a front leg of an adult Drosophila (200 nm voxels). A smaller, high resolution volume (50 nm 
voxels, highlighted) centered on the first thoracic (T1) neuromere of the VNC and including the initial segment of the leg nerve was 
used for tracing. (c) Virtual slice though the main leg nerve at the location indicated by the cyan square in (a) and (d). Colors of the 
individual neuron cross-sections correspond to the neuron type classifications shown in (d) Scale bar: 10 µm. (d) Left: 108 individual 
axons were manually skeletonized and clustered based on their morphologies. (e) Example neuron morphologies for motor (top) and 
sensory (bottom) neuron clusters. Axons arborizing dorsally in the VNC were identified as motor neurons (Baek and Mann, 2009; 
Brierley et al., 2012) and those arborizing ventrally as sensory neurons (Tsubouchi et al., 2017). Two major subtypes of leg sensory 
neurons, campaniform sensilla and chordotonal neurons, were identified based on arborization pattern in the VNC (Mamiya et al., 
2018). 
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Figure 5: Automated Segmentation of Neuronal Morphologies using Convolutional Neural Networks (CNNs). (a) 
Schematic of U-NET CNN architecture used for automated segmentation (adapted from (Funke et al., 2017)). (b-d) 
Automated segmentation of XNH image volumes. (b) Raw XNH image data, recorded from Drosophila VNC. (c) Predicted 
affinities output by 3D U-NET corresponding to data shown in (b). For each voxel, the CNN calculates an affinity vector that 
quantifies how likely the pixel is grouped in the same neuron as neighboring pixels in z, y and x directions (plotted as RGB 
color components, respectively). In isotropic XNH data, affinities in different cardinal directions are usually similar, leading 
to images that appear mostly grayscale. These dark (low affinity) voxels are the basis for membrane predictions. (d) 
Segmentation of volume corresponding to data shown in (a) and affinities shown in (b). Each neuron is agglomerated into a 
3D morphology based on the affinities. In this visualization, each neuron is colored with a unique color. (e) 3D visualization 
of automatically segmented neurons in the Drosophila VNC. 
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Discussion 

Advances in XNH imaging of neural circuits 
Here, we present non-destructive, X-ray phase-contrast 

imaging of neural tissue with sufficiently high resolution 
and FOV to densely reconstruct individual neuronal 
morphologies. We have obtained these results by 
combining several innovative elements. The instrument 
developed at the ID16A beamline at the European 
Synchrotron (da Silva et al., 2017) can produce a highly 
brilliant and coherent X-ray probe focused to a spot below 
30 nm, which we have used for holographic imaging. 
Another critical aspect is the accuracy of the rotational and 
translational stage movements to match the length scale of 
the expected resolution (< 100 nm); for this we employed 
active capacitive compensation to stabilize the sample 
(Villar et al., 2018). The sample itself must also remain 
stable throughout the measurements - a particular concern 
is heating and warping of the sample due to radiation 
absorption. We found that data quality depends on 
delivering an appropriate X-ray dose that is sufficient to 
produce clear images, but that does not warp the sample 
(Du and Jacobsen, 2018). Imaging in cryogenic conditions 
was a key development that mitigated sample warping and 
allowed us to reliably record data at sub-100 nm voxel 
sizes.  

Sample properties are also important for image quality. 
Here, we chose to use heavy-metal staining protocols for 
EM, which enhance contrast in cell membranes, facilitate 
dense reconstruction of neurons, and allow the same 
samples to be imaged post-hoc with EM (Fig. 2a,b). 
However, with phase-contrast imaging, even unstained 
tissue can generate sufficient contrast to densely trace 
individual neurons (Fig. S1g, Supplementary Video 6). 
Phase-contrast imaging enables data acquisition from thick 
samples (> 1 mm), but image quality improves the closer 
the sample thickness is to the FOV. We found that a 300 
μm thick sample of mouse cortex produces high-quality 
results (Fig. 1g), while a ~1 mm thick sample could still be 
imaged, but with a noticeable loss in resolution (Fig. 2b). 
Lastly, we developed a simple re-embedding method (Figs. 
1a & 3b) to avoid rough edges on the surface of the sample, 
minimizing artifacts in the phase reconstructions.  

Neuron segmentation from XNH data 
We demonstrate that XNH enables individual neuronal 

morphologies to be reconstructed in their dense circuit 
context. Here, we adapted reconstruction approaches 
developed originally for large-scale EM. Because XNH 
images appear qualitatively similar to EM images (Fig. 2), 
adapting these techniques was relatively straightforward. 
While XNH imaging currently cannot resolve the smallest 

neuronal branches (< 50 nm), reconstruction of a neuron’s 
large-diameter processes often clearly indicates its cell 
type (Schneider-Mizell et al., 2016). Indeed, we were able 
to identify pyramidal neurons in mouse cortex (Fig. 1g) 
and to differentiate sensory and motor neurons in the fly 
VNC (Fig. 4e).  

The larger voxel size of XNH data relative to EM data 
offers several practical advantages. Larger voxels produce 
substantially smaller image files for a given tissue volume, 
which can be analyzed without specialized hardware 
infrastructure necessary for large-scale EM datasets. 
Furthermore, manual and automated analysis can be 
completed more rapidly, considering the reduced 
complexity of the task. Indeed, we deployed CNNs for 
automated segmentation in XNH volumes on timescales of 
a few hours (~ 0.1 s/μm3 XNH compared with ~ 10 s/μm3 
for ssTEM).  

Outlook 
XNH is complementary to and compatible with both 

LM and EM imaging. XNH offers superior resolution with 
denser labeling compared to most LM techniques, and can 
image samples too thick for LM without tissue clearing. 
XNH achieves lower resolution than volumetric EM, 
however, offers advantages in speed, convenience, and 
data handling. Since physical thin-sectioning is not 
necessary, XNH can image specimens that are difficult to 
cut reliably (such as a whole Drosophila leg). XNH image 
data also requires no section-to-section alignment, 
eliminating a step that continues to be a computational 
challenge for large-scale EM datasets.  

By filling a gap between the resolutions of LM and 
EM, XNH can enable multiscale characterization of neural 
circuits that depend on both long-range connections and 
local computations, such as the Drosophila motor system 
and mammalian cortex. For example, a population of 
cortical neurons could be functionally imaged with LM, 
their long-range inputs mapped via XNH, and their local 
connectivity reconstructed using targeted EM. 

At the resolutions achieved here, XNH is well-suited 
for mapping projectomes (i.e. atlases of all large-caliber 
connections between brain regions). Previously, single-
neuron-resolution projectomes have been obtained using 
large-scale EM or built up from sparse fluorescent labeling 
(Chiang et al., 2011; Hildebrand et al., 2017); however, 
XNH represents a less laborious approach. A few XNH 
scans can encompass the whole brain of small model 
organisms such as adult Drosophila (Fig. 1), and in a 
typical beamline experiment (1-2 weeks), the entire brain 
of the larval zebrafish or larval tadpole could be mapped. 
With technical upgrades to increase imaging throughput, 
producing projectomes of small mammalian brains or a 
mouse brain may be possible within the next few years 
(Mikula, 2016). 
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It is worth noting that the results demonstrated here are 
still far from any theoretical resolution limits for hard X-
rays, which have wavelengths on the angstrom scale. In 
practice, XNH resolution is limited by focusing optics, 
mechanical stability and precision of stage movements, 
sample warping and performance of reconstruction 
algorithms, rather than by fundamental physical limits. 
The upgrade of the European Synchrotron (to be 

completed in 2020), along with planned improvements to 
X-ray optics and detectors, will likely improve imaging 
resolution and throughput. Future technical advances may 
allow XNH to resolve the thinnest neuron branches and the 
synapses between them, opening a wide array of 
applications in mapping neuronal circuit connectivity. 

 

 

Acknowledgements 
The authors acknowledge Jan Funke for providing code and assistance with automated segmentation; Julio da Silva 

for providing code and assistance for Fourier Shell Correlation measurements; John Tuthill and Tony Azevedo for 
discussions and advice regarding Drosophila motor systems; Norbert Perrimon, Matt Pecot, and Haluk Lacin for 
providing fly lines; Rick Fetter and Andrew Thompson for sample preparation advice; Rachel Wilson and Hannah 
Somhegyi for discussion and advice; Thedita Pedersen for preprocessing and alignment of image data; Lia DeCoursey, 
Rholee Xu, and Thedita Pedersen for neuron tracing; and Jimin Shin, Wei-Wei Lou, Julie Han, Mingguan Liu, Yumin Hu, 
and Rholee Xu for manual annotation of ground truth segmentation for CNN training.  

Funding 
The authors acknowledge ESRF for granting beamtime for the experiments: LS2845, IHLS2928, IHLS3121, IHHC3498, 
IHMA7 and IHLS3004. This work was supported by the NIH (R01NS108410), and awards from the Edward R. and Anne 
G. Lefler Center, Goldenson Family, and HMS Dean’s Initiative to W-C.A.L. 

Declaration of Interests 
The authors declare no competing interests. 

Data and materials availability 
Image data and custom code will be made publicly available upon publication of the manuscript. In the interim, to request 
access to the data or custom code, please contact: joitapac@esrf.eu, Aaron_Kuan@hms.harvard.edu, Wei-
Chung_Lee@hms.harvard.edu. 
 
  

.CC-BY-NC-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/653188doi: bioRxiv preprint 

mailto:joitapac@esrf.eu
mailto:Aaron_Kuan@hms.harvard.edu
mailto:Wei-Chung_Lee@hms.harvard.edu
mailto:Wei-Chung_Lee@hms.harvard.edu
https://doi.org/10.1101/653188
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

References 
 
Atasoy, D., Betley, J.N., Li, W.-P., Su, H.H., Sertel, S.M., Scheffer, L.K., Simpson, J.H., Fetter, R.D., and Sternson, S.M. (2014). A 
genetically specified connectomics approach applied to long-range feeding regulatory circuits. Nat. Neurosci. 17, 1830–1839. 

Baek, M., and Mann, R.S. (2009). Lineage and Birth Date Specify Motor Neuron Targeting and Dendritic Architecture in Adult 
Drosophila. J. Neurosci. 29, 6904–6916. 

Brierley, D.J., Rathore, K., VijayRaghavan, K., and Williams, D.W. (2012). Developmental origins and architecture of Drosophila leg 
motoneurons. J. Comp. Neurol. 520, 1629–1649. 

Briggman, K.L., and Bock, D.D. (2012). Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22, 
154–161. 

Cedola, A., Bravin, A., Bukreeva, I., Fratini, M., Pacureanu, A., Mittone, A., Massimi, L., Cloetens, P., Coan, P., Campi, G., et al. 
(2017). X-Ray Phase Contrast Tomography Reveals Early Vascular Alterations and Neuronal Loss in a Multiple Sclerosis Model. Sci. 
Rep. 7, 5890. 

Chiang, A.-S., Lin, C.-Y., Chuang, C.-C., Chang, H.-M., Hsieh, C.-H., Yeh, C.-W., Shih, C.-T., Wu, J.-J., Wang, G.-T., Chen, Y.-C., 
et al. (2011). Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution. Curr. Biol. 
21, 1–11. 

Cloetens, P., Ludwig, W., Baruchel, J., Guigay, J.-P., Pernot-Rejmánková, P., Salomé-Pateyron, M., Schlenker, M., Buffière, J.-Y., 
Maire, E., and Peix, G. (1999). Hard x-ray phase imaging using simple propagation of a coherent synchrotron radiation beam. J. Phys. 
D. Appl. Phys. 32, A145–A151. 

Du, M., and Jacobsen, C. (2018). Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic 
materials. Ultramicroscopy 184, 293–309. 

Dyer, E.L., Gray Roncal, W., Prasad, J.A., Fernandes, H.L., Gürsoy, D., De Andrade, V., Fezzaa, K., Xiao, X., Vogelstein, J.T., 
Jacobsen, C., et al. (2017). Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography. ENeuro 4, ENEURO.0195-
17.2017. 

Fonseca, M. de C., Araujo, B.H.S., Dias, C.S.B., Archilha, N.L., Neto, D.P.A., Cavalheiro, E., Westfahl, H., da Silva, A.J.R., and 
Franchini, K.G. (2018). High-resolution synchrotron-based X-ray microtomography as a tool to unveil the three-dimensional neuronal 
architecture of the brain. Sci. Rep. 8, 12074. 

Funke, J., Tschopp, F.D., Grisaitis, W., Sheridan, A., Singh, C., Saalfeld, S., and Turaga, S.C. (2017). A Deep Structured Learning 
Approach Towards Automating Connectome Reconstruction from 3D Electron Micrographs. 1–11. 

Gao, R., Asano, S.M., Upadhyayula, S., Pisarev, I., Milkie, D.E., Liu, T.-L., Singh, V., Graves, A., Huynh, G.H., Zhao, Y., et al. 
(2019). Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363, eaau8302. 

Harauz, G., and van Heel, M. (1986). Exact filters for general geometry three dimensional reconstruction. Optik. 73, 146–156. 

Heel, M. van, and Schatz, M. (2017). Reassessing the Revolution’s Resolutions. BioRxiv 224402. 

van Heel, M., and Schatz, M. (2005). Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262. 

Heintzmann, R., and Gustafsson, M.G.L. (2009). Subdiffraction resolution in continuous samples. Nat. Photonics 3, 362–364. 

Hell, S.W. (2007). Far-field optical nanoscopy. Science 316, 1153–1158. 

Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S., and Denk, W. (2013). Connectomic reconstruction of the inner 
plexiform layer in the mouse retina. Nature 500. 

Hildebrand, D.G.C., Cicconet, M., Torres, R.M., Choi, W., Quan, T.M., Moon, J., Wetzel, A.W., Scott Champion, A., Graham, B.J., 
Randlett, O., et al. (2017). Whole-brain serial-section electron microscopy in larval zebrafish. Nature 545, 345–349. 

Hua, Y., Laserstein, P., and Helmstaedter, M. (2015). Large-volume en-bloc staining for electron microscopy-based connectomics. 
Nat. Commun. 6, 7923. 

Huang, B., Bates, M., and Zhuang, X. (2009). Super-Resolution Fluorescence Microscopy. Annu. Rev. Biochem. 78, 993–1016. 

Khimchenko, A., Pacureanu, A., Bikis, C., Hieber, S.E., Thalmann, P., Deyhle, H., Schweighauser, G., Hench, J., Frank, S., Müller-
Gerbl, M., et al. (2018). Hard X-ray Nano-Holotomography of Formalin-Fixated and Paraffin-Embedded Human Brain Tissue. 
Microsc. Microanal. 24, 354–355. 

Lam, S.S., Martell, J.D., Kamer, K.J., Deerinck, T.J., Ellisman, M.H., Mootha, V.K., and Ting, A.Y. (2015). Directed evolution of 
APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54. 

.CC-BY-NC-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/653188doi: bioRxiv preprint 

https://doi.org/10.1101/653188
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Lee, W.-C.A., Bonin, V., Reed, M., Graham, B.J., Hood, G., Glattfelder, K., and Reid, R.C. (2016). Anatomy and function of an 
excitatory network in the visual cortex. Nature 532, 370–374. 

Mamiya, A., Gurung, P., and Tuthill, J.C. (2018). Neural Coding of Leg Proprioception in Drosophila. Neuron 100, 636-650.e6. 

Massimi, L., Hagen, C.K., Endrizzi, M., Munro, P.R.T., Havariyoun, G., Hawker, S.P.M., Smit, B., Astolfo, A., Larkin, O., Waltham, 
R.M., et al. (2019). Laboratory-based x-ray phase contrast CT technology for clinical intra-operative specimen imaging. In Medical 
Imaging 2019: Physics of Medical Imaging, H. Bosmans, G.-H. Chen, and T. Gilat Schmidt, eds. (SPIE), p. 62. 

Mikula, S. (2016). Progress Towards Mammalian Whole-Brain Cellular Connectomics. Front. Neuroanat. 10, 62. 

Mirone, A., Brun, E., Gouillart, E., Tafforeau, P., and Kieffer, J. (2014). The PyHST2 hybrid distributed code for high speed 
tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nucl. Instruments Methods Phys. Res. 
Sect. B Beam Interact. with Mater. Atoms 324, 41–48. 

Mizutani, R., Saiga, R., Takeuchi, A., Uesugi, K., and Suzuki, Y. (2013). Three-dimensional network of Drosophila brain hemisphere. 
J. Struct. Biol. 184, 271–279. 

Mokso, R., Cloetens, P., Maire, E., Ludwig, W., and Buffière, J.-Y. (2007). Nanoscale zoom tomography with hard x rays using 
Kirkpatrick-Baez optics. Appl. Phys. Lett. 90, 144104. 

Ng, J., Browning, A., Lechner, L., Terada, M., Howard, G., and Jefferis, G.S.X.E. (2016). Genetically targeted 3D visualisation of 
Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG. Sci. Rep. 6, 38863. 

Saalfeld, S., Cardona, A., Hartenstein, V., and Tomancak, P. (2009). CATMAID: collaborative annotation toolkit for massive amounts 
of image data. Bioinformatics 25, 1984–1986. 

Schneider-Mizell, C.M., Gerhard, S., Longair, M., Kazimiers, T., Li, F., Zwart, M.F., Champion, A., Midgley, F.M., Fetter, R.D., 
Saalfeld, S., et al. (2016). Quantitative neuroanatomy for connectomics in Drosophila. Elife 5, 1133–1145. 

Schulz, G., Weitkamp, T., Zanette, I., Pfeiffer, F., Beckmann, F., David, C., Rutishauser, S., Reznikova, E., and Müller, B. (2010). 
High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast. J. R. Soc. 
Interface 7, 1665–1676. 

Shahbazi, A., Kinnison, J., Vescovi, R., Du, M., Hill, R., Joesch, M., Takeno, M., Zeng, H., da Costa, N.M., Grutzendler, J., et al. 
(2018). Flexible Learning-Free Segmentation and Reconstruction of Neural Volumes. Sci. Rep. 8, 14247. 

Shahmoradian, S.H., Tsai, E.H.R., Diaz, A., Guizar-Sicairos, M., Raabe, J., Spycher, L., Britschgi, M., Ruf, A., Stahlberg, H., and 
Holler, M. (2017). Three-Dimensional Imaging of Biological Tissue by Cryo X-Ray Ptychography. Sci. Rep. 7, 6291. 

da Silva, J.C., Pacureanu, A., Yang, Y., Bohic, S., Morawe, C., Barrett, R., and Cloetens, P. (2017). Efficient concentration of high-
energy x-rays for diffraction-limited imaging resolution. Optica 4, 492. 

Sommer, C., Straehle, C., Kothe, U., and Hamprecht, F.A. (2011). Ilastik: Interactive learning and segmentation toolkit. In 2011 IEEE 
International Symposium on Biomedical Imaging: From Nano to Macro, (IEEE), pp. 230–233. 

Töpperwien, M., van der Meer, F., Stadelmann, C., and Salditt, T. (2018). Three-dimensional virtual histology of human cerebellum 
by X-ray phase-contrast tomography. Proc. Natl. Acad. Sci. U. S. A. 115, 6940–6945. 

Tsubouchi, A., Yano, T., Yokoyama, T.K., Murtin, C., Otsuna, H., and Ito, K. (2017). Topological and modality-specific 
representation of somatosensory information in the fly brain. Science 358, 615–623. 

Villar, F., Andre, L., Baker, R., Bohic, S., da Silva, J.C., Guilloud, C., Hignette, O., Meyer, J., Pacureanu, A., Perez, M., et al. (2018). 
Nanopositioning for the ESRF ID16A Nano-Imaging Beamline. Synchrotron Radiat. News 31, 9–14. 

Xu, C.S., Hayworth, K.J., Lu, Z., Grob, P., Hassan, A.M., García-Cerdán, J.G., Niyogi, K.K., Nogales, E., Weinberg, R.J., and Hess, 
H.F. (2017). Enhanced FIB-SEM systems for large-volume 3D imaging. Elife 6. 

Yu, H., Xia, S., Wei, C., Mao, Y., Larsson, D., Xiao, X., Pianetta, P., Yu, Y.-S., and Liu, Y. (2018). Automatic projection image 
registration for nanoscale X-ray tomographic reconstruction. J. Synchrotron Rad 25, 1819–1826. 

Zhang, Q., Lee, W.-C.A., Paul, D.L., and Ginty, D.D. (2019). Multiplexed peroxidase-based electron microscopy labeling enables 
simultaneous visualization of multiple cell types. Nat. Neurosci. 22, 828–839. 

Zheng, Z., Lauritzen, J.S., Perlman, E., Robinson, C.G., Nichols, M., Milkie, D., Torrens, O., Price, J., Fisher, C.B., Sharifi, N., et al. 
(2018). A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. Cell 174, 730-743.e22. 

.CC-BY-NC-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/653188doi: bioRxiv preprint 

https://doi.org/10.1101/653188
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Results
	XNH imaging of central and peripheral nervous systems
	Correlative X-ray imaging with EM and genetic labeling
	Millimeter-scale XNH imaging of a Drosophila leg at single-neuron resolution
	Reconstruction of Individual Neuron Morphologies
	Automated Segmentation of Neuronal Morphologies using Convolutional Neural Networks

	Discussion
	Advances in XNH imaging of neural circuits
	Neuron segmentation from XNH data
	Outlook

	Acknowledgements
	Funding
	Declaration of Interests
	Data and materials availability
	References

