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Report: 
Introduction: The aim of this project is to investigate the molecular basis of heart regulation. Using X-ray 
diffraction on electrically paced intact trabeculae from the rat ventricle at ID02, we have shown that in the 
heart as in the skeletal muscle a dual filament mechanism of regulation of contraction operates: the canonical 
Ca2+-dependent thin filament activation, making the actin sites available for binding of the myosin motors, 
and the mechano-sensitivity in the thick filament (1,2), acting as a downstream mechanism that adapts to the 
load the recruitment of the myosin motors from their OFF state, in which they lie on the surface of the thick 
filament unable to bind actin and split ATP. In a heartbeat, unlike during skeletal muscle tetanic contraction, 
the rise of internal [Ca2+] is transient and may not reach the level for full thin filament activation, thus the 
mechanical response depends on both the internal [Ca2+] and the sensitivity of the thin filament to calcium 
(3,4), parameters that are under the control of several regulatory mechanisms among which the increase in 
sarcomere length (SL) (Length Dependent Activation, which is the cellular basis of the Starling Law of the 
heart (5)) and the phosphorylation of contractile, regulatory, and cytoskeletal proteins (6-8). Previous work 
on demembranated preparations suggested that the increase of SL and degree of phosphorylation of the 
Myosin Binding Protein-C (MyBP-C), an accessory protein that lies on the thick filament and can bind the 
thin filament with its N-terminus, can by themselves alter the regulatory state of the thick filament, 
switching motors ON at low Ca2+ (9). In contrast, our recent X-ray diffraction experiments on intact 
trabeculae have demonstrated that inotropic interventions able to double the systolic force like increase in SL 
from 1.95 to 2.22 µm or addition of isoprenaline (ISO) 10-7 M to the bathing solution (which increases the 
degree of phosphorylation of MyBP-C) do not affect any of the myosin based reflections related to the OFF 
state of the thick filament in diastole, as expected from an energetically well suited downstream mechanism 
as thick filament mechanosensing, which adapts the recruitment of myosin motors to the load (10). The 
results prove the unique effectiveness of intact trabeculae approach in structural investigations on thick 
filament regulation and related myopathies and suggest that in skinned preparations the membrane 
permeabilisation likely affects the intramolecular interactions (head-head and head-tail) and the 
intermolecular interactions (Myosin-MyBP-C-titin) that keep the myosin motors in the OFF state. 
Omecamtiv Mecarbil (OM) is a putative positive inotropic tool for treatment of systolic heart dysfunction 



(11,12), currently in phase-three clinical trial (13). OM binds to the catalytic domain of both α cardiac 
myosin (the main isoform in the mouse and rat heart and in the atrium of large mammals and human), β 
cardiac myosin (the main isoform in the ventricle of large mammals and human) and the slow skeletal 
isoform (14), increasing the affinity for actin attachment, and thus causing, in skinned myocytes, a leftward 
shift in the relation between force and Ca2+ concentration (14, and our preliminary experiments). However 
the maximum force developed at saturating Ca2+ is reduced to ½ that of control because myosin motors that 
bind OM are unable to undergo the force generating stroke (15). In LS-2867 we investigated the structural 
basis of the inotropic action of OM, whether it influences the regulatory state of the thick filament in diastole. 
Methods. The heart trabecula, dissected from the right ventricle of the rat, is mounted in a thermoregulated 
trough perfused with oxygenated solution (1.2 ml/min, 27°C) and attached, via titanium double hooks, to the 
lever arms of a strain gauge force transducer and a loudspeaker motor carried on the moveable stage of a 
microscope. SL is measured with a 40x dry objective and a 25x eyepiece. The length of the trabecula is 
adjusted to have an initial SL of ~2.1 µm (L0 length). A pair of mylar windows is positioned close to the 
trabecula, about 1 mm apart, to minimize the X-ray path in the solution. The trough is sealed to prevent 
solution leakage and the trabecula is vertically mounted in the beam path. Trabeculae are electrically 
stimulated at 0.5 Hz to produce twitches. 2D X-ray patterns are collected during diastole and a the peak of 
the twitch both in fixed and in sarcomere length clamp conditions (16) either in control solution or in solution 
with 1µM OM. This OM concentration is used as it is know to potentiate the steady force attained by a 
skinned preparation at partial Ca2+ activation (pCa ∼6.5, which is presumably the intracellular [Ca2+] attained 
during the systole by an electrically paced trabecula, see also (14)). A FReLoN CCD detector is placed at 31 
m from the preparation to collect the first orders of the sarcomeric reflections with 1.6 ms time windows. The 
detector is then moved to 1.6 m to collect up to the 6th order of the myosin-based meridional reflections (5-
20 ms time windows) at the same trabecula lengths as those set at 31 m. Given the long time taken by OM 
equilibration into the trabecula (45min), the absence of full recovery after OM washout and to avoid 
confounding effect of radiation damage, the data in control and in OM were collected from different 
trabeculae. The parameter that revealed the most effective for the normalisation of the intensity of the 
reflections for the different mass of individual trabeculae was the sum of the intensities of the low angle 
equatorials (I1,0+ I1,1).    
Results. Addition of 1 µM OM to the physiological solution ([Ca2+] 1 mM) reduces by 30-40% the intensity 
of the ML1 layer line, originating from the three-stranded helical symmetry of myosin motors on the surface 
of the thick filament, the intensity of the meridional myosin-based reflections (M1, also contributed by the 
MyBP-C, M3 originating from the axial repeat of the myosin motors, M6 from the backbone periodicity) and 
the intensity of the meridional T1 reflection from the axial repeat of regulatory protein troponin on the thin 
filament. Moreover the spacing of M6, marking the extension of the thick filament, is increased by 0.3% by 
OM in diastole. 
Conclusions: The results indicate that 1 µM OM affects the OFF state of the thick filament in diastole, 
indicating that ∼20% of motors are switched ON in the absence of both Ca2+ activation of the thin filament 
and stress on the thick filament.  
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