	Experiment title: Energy dependence of resonant magnetic x-ray scattering from bulk dysprosium at the L_{Π} and L_{Π} edges	Experiment number: HE-199
Beamline: ID20	Date of experiment: from: 03-sep-97 to: 08-Sep-97	Date of report: 01/03/98
Shifts:	Local contact(s): A.Stunault	Received at ESRF: 0 2 MAR. 1998

Names and affiliations of applicants (* indicates experimentalists):

N.Bernhoeft, ILL

Report:

The experiment has concentrated on a full study of the the polarisation dependence of the resonance of magnetic X-ray scattering at the L3 edge of bulk dysprosium (E=7.79 keV). The sample was cut with a face perpendicular to the c-axis of hexagonal dysprosium. The chosen scattering geometry was vertical, implying an incident σ polarisation., Integrated intensities have been measured for energies ranging from 7.74 keV to 7.82 keV in 3 different detector configurations: detector "straight through" (no polarisation analysis), and σ - σ and σ - π polarisation channels, using a pyrolitic graphite (0 0 6) as analyser crystal. Only the results in the σ - π geometry are shown here.

The first and second order magnetic satellites of the $(0\ 0\ 2)$, $(0\ 0\ 4)$ and $(0\ 0\ 6)$ satellites were measured. We will quote them as $(0\ 0\ L\pm\tau)$ and $(0\ 0\ L\pm2\tau)$. We also looked for the third and fourth order satellites but could not observe them. This is a striking difference with holmium where $(0\ 0\ 2+3\tau)$ and $(0\ 0\ 2+4\tau)$ are no more than one order of magnitude weaker than $(0\ 0\ 2+2\tau)$. Figures 1 shows some of the integrated intensities (corrected for attenuation and Lorentz factor) obtained in σ - π .

The scattering amplitudes are the sum of three contributions: non-resonant (only for $(0\ 0\ L\pm\tau)$, dipolar (2p-Sd transition) and quadrupolar (2p-4f transition). The dipolar contribution is corrected for the exchange splitting of the excited 5d level. The lines in figure 1 are fits to the model. The analysis of the Q-dependence of the amplitudes is presented in figures 2 and 3, for the $(0\ 0\ L\pm\tau)$ and $(0\ 0\ L\pm2\tau)$ satellites respectively. The solid lines are fits to the theory.

Postal address: User Office, ESRF, B.P. 220, F-38043 GRENOBLE Cedex, France. Telephone: +33 (0)4 7688 2552; Fax: +33 (0)4 7688 2020; e-mail: useroff@esrf.fr.

^{*}A.Stunault, ESRF

^{*}C.Vettier, ESRF

^{*}F.Yakhou, ESRF

Postal address:User Office, ESRF, B.P. 220, F-38043 GRENOBLE Cedex, France. Telephone: +33(0)4 7688 2552; Fax: +33(0)4 7688 2020; e-mail: useroff@esrf.fr.