Experimental report of beamtime HG161

<u>Physico chemical study of dyes and pigments used at the Manufacture Nationale de</u> <u>Sèvres : focus on Thenard's Blue</u>

Context and motivation of the research

When introducing a $Co_{1-x}Al_{2+2x/3}O_4$ ($0 \le x \le 1$) spinel or a $CoZr_4(PO_4)_6$ pigments in a porcelain glaze, the pigment reacts with the vitreous matrix and gets partially dissolved, changing the chemistry of the glaze, the crystal phases present and the resulting colour and possibly causing the devitrification of the glaze. This work aims at better understanding the reactions that take place and how to avoid them.

List of the analysed samples with some details on their preparation (powder, crosssection...)

 $Co_{1-x}Al_{2+2x/3}O_4$ ($0 \le x \le 1$) and MZr₄(PO₄)₆ (M = Co, Cu) pigments were prepared and introduced into porcelain glazes (33 wt% of pigment and 67 wt% pf PbO-B₂O₃-SiO₂ glass, fired at 880 °C). Powder samples of the pigments (in 500 µm capillaries) and glazes (in 300 µm capillaries) were analysed at ID22. 13 powder samples were analysed.

Main results obtained

The Co_{1-x}Al_{2+2x/3}O₄ pigment has a spinel structure with a tetragonal distortion. CoAl₂O₄ was analysed and the structure of γ -Al₂O₃ was solved. It follows the group space *I*4₁/*amd* with occupation of Oxygen atoms in 16*h* site and Al atoms in 8*d*, 8*c*, 4*a*, 8*e* and 16*g* sites. Co_{0.25}Al_{2.5}O₄ pigment and corresponding glaze were analysed. The pigment consists of two spinel phases, one close to CoAl₂O₄ and the other close to γ -Al₂O₃. The structures of both these phases were solved.

Once put in the glaze, the γ -Al₂O₃ reacts with B₂O₃ of the glaze to create Al₄B₂O₉ crystals and cause the devitrification of the glaze. Similarly, both CoZr₄(PO₄)₆ and CuZr₄(PO₄)₆ were analysed, and their structure solved. They are nasicon-type compounds and follow the same structure as NiZr₄(PO₄)₆. Once put in the glaze, these pigments react with it to form ZrSiO₄ and PbZr₄(PO₄)₆. This latter product's structure was also solved.

Eventual communication of results (manuscript in preparation, conference...

This work is part of a PhD project and will be presented in two papers, one about the reactivity of Thénard Blue pigments in a porcelain glaze and another about $MZr_4(PO_4)_6$ (M = Co, Cu) pigments and their stability in a porcelain glaze.