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Introduction: 
CrI3 is a layered van der Waals (vdW) material that has become an attractive research topic owing to its 
ferromagnetic properties both in the bulk and few-layers regime [1]. However, almost all experimental proves 
of few-layers CrI3 magnetism come from exfoliated flakes, and currently only one work has been published 
about CrI3 crystals prepared by epitaxial solid state methods [2]. Hereafter, we report the main results that 
we obtained from the preliminary characterizations of epitaxial ultra-thin films of CrI3 grown on Au(111) 
substrate in our ultra-high vacuum (UHV) system.  
 

Growth procedure: 
We grew epitaxial CrI3 by codeposition of Cr and I on Au(111) single crystal substrate using elemental Cr and 
a metal iodide crystal precursors. Cr atoms are deposited from an e-beam evaporator using highly pure 
(99.99%) Cr rods. Evaporation conditions have been found with the help of a quartz micro balance (QMB) and 
the effective deposited amount of material was calibrated by estimating the partial surface coverage by 
scanning tunnelling spectroscopy (STM). On the other hand, iodine is evaporated by applying resistive heat to 
a crucible containing anhydrous CrI3 powder (99.99%). For the same reason as for CrCl3 (see experimental 
report IH-MA-98), halogen atoms are preferably supplied from knudsen cells filled with metal halide 
compounds, e.g. CrI3 powder in our case. We filled the crucible under inert N2 gas atmosphere inside our glove 
box in order to reduce the exposure of CrI3 to moisture, this compound being extremely hygroscopic. We 
evaporated CrI3 at a temperature of 340°C, when the pressure in the chamber is steadily 8e-08mbar. We 
verified that this pressure is only negligibly due to source degassing and it is essentially iodine atmosphere. 
The codeposition time was set to reach total coverage below one monolayer and a stoichiometric ratio close 
to Cr:I=1:3. As opposed to CrCl3 (see experimental report IH-MA-98), no traces of Cr were found upon 
evaporation of CrI3 on the clean Au surface when the Cr source is off. 
 

Characterization of the sample: 
The as-grown sample presents a complex peculiar low energy electron diffraction (LEED) pattern that we 
interpreted as the superposition of the diffraction pattern from three equivalent domains of rectangular 



 

surface cells, 60° rotated the one respect to each other (fig 1a). Our hypothesis is confirmed by the simulation 
in fig 1b calculated with the LEEDpat software which perfectly matches the experimental result. CrI3 at room 
temperature is in fact monoclinic (90° between the two in-plane axes) and it has slightly different lattice 
constants close to 6.9Ȧ. From our simulation we deduce instead a=7.77 Ȧ and b=14.98Ȧ<2a, which points to 

significant lattice expansion and a distortion along one of the two planar axes. A similar picture have been 
observed for other monoclinic 2D crystal epitaxially grown by MBE [3].  
Quantification of the deposited amount of elements has been determined by Auger electron spectroscopy 
(AES). We estimated from the spectrum in figure 1c a Cr:I ratio of 1:8, quite far from the expected 1:3 
stoichiometry. However, the excess iodine might be in the form of elemental Iodine adsorbed either on the Au 
surface or on the CrI3 layer itself. 
Scanning tunnelling microscopy (STM) images performed at low temperature (14K) show that the surface is 
widely covered by islands having long stripe shape (fig 1d-e) and an apparent height of 4Ȧ. Not any peculiar 

pattern is detectable on top of these islands and no herringbone reconstruction is visible on the free areas 
nearby. 
X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) have been performed in 
situ on one of the samples, one day after its growth. The XAS spectra measured at the Cr L2,3 edge show sharp 
features and a structured line shape, letting us deduce the material is not metallic (fig 2, top left). Moreover, 
the profile shape is reminiscent of the bulk case (experimental bulk CrI3 XAS is shown in fig 2, top centre) and 
resembles also the one simulated by us with Quanty [4] using multiplet and ligand field theory (fig 2, top right). 
Down to 5K and with 9T magnetic field applied along the X-ray beam direction and perpendicularly to the 
surface, XMCD signal is 26% of the absorption (fig 2, bottom left). Also in this case, the line shape is reasonably 
consistent with the experimental XMCD measured from the bulk crystal (fig 2, bottom centre) – although 
polarized absorptions present some differences which deserve a more accurate investigation – and with our 
calculations as well (fig 2, bottom right). The sample is magnetically anisotropic with easy axis perpendicular 
to the surface plane, as expected. 
 
Conclusions: 
XAS and XMCD measurements performed so far confirm that we are able to synthesize ultra-thin CrI3 on 
Au(111) by codeposition of Cr and I showing intense XMCD signal and easy axis perpendicular to the layer 
plane, as expected. From the synthesis point of view, a few issues remain to be solved: 1) confirm the single 
layer nature of the CrI3; 2) identify parasitic phases and eventually get rid of them (e.g. excess iodine, CrI2, 
etc.); 3) test the effect of other substrate growth temperatures and post-growth annealing. The lack of smaller 
scale STM images can help to answer this question. Extended magnetic characterization is the object of a 
dedicated beam time that we applied for (see corresponding proposal). 
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Fig1: a) LEED pattern measured at 59eV: yellow marks point to (1x1) reconstruction or substrate, while green 
blue and orange circles indicate reflections from 3 equivalent rectangular overlayer domains 0°, 60°, 120° 
rotated respectively. b) simulation of the LEED pattern in a) calculated using LEEDPat software. c) AES 
spectrum showing characteristic iodine and chromium peaks, from which we extracted deposited element 
ratio. d-e) STM images at 14K showing long narrow and straight overlayer material islands. 

 

 

 

 

 



 

 
 
Fig2: XAS (top row) and XMCD (bottom row) spectra measured at Cr L2,3 edge. From left to right we show 
experimental CrI3/Au(111), experimental bulk CrI3 and theoretical bulk CrI3 simulated with Quanty. 
 


