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Report: 
Mn3Sn is a magnetic Weyl semimetal exhibiting a 
large anomalous Hall effect without net magnetization 
at room temperature, opening the possibility for 
spintronic memory without stray fields. These 
fascinating properties emerge from the nonzero Berry 
curvature in the inverse triangular antiferromagnetic 
structure on the Kagome lattice of Mn atoms (Fig. 1a). 
The nonzero Berry curvature is attributed to the 
existence of local cluster multipole moments (Fig. 1b), 
a generalization of the uniform magnetization in 
ferromagnets. This notion has been supported by the 
disappearance of terahertz anomalous Hall effect upon 
entering the helical magnetic state (Fig. 1c). The goal of 
the present proposal was therefore to understand the 
evolution of collective spin excitations across the topological phase transition by utilizing high-resolution soft-
x-ray RIXS at the Mn L3 edge. Since no resonant x-ray magnteic diffraction study has been reported on this 
compound, we also tried to observe the out-of-plane magnetic Bragg peak from the helical magnetic state 
utilizing the photodiode installed in the chamber. 

Single crystals of Mn3Sn (1 x 1 x 0.1 mm3 in size) were grown by the Bridgeman method and pre-aligned 
with Laue diffractometer. To maximize the momentum transfer from the x-rays at the Mn L3 absorption edge 
(~640 eV), we fixed the scattering angle 2q  at 150 degrees. We first set the incident polarization to s polarization 
and searched for Bragg peaks. Due to the small lattice parameters in Mn3Sn and geometrical constraints only 
one lattice Bragg peak was accessible with hn < 2 keV in ID32. We first found a lattice Bragg peak (101) with 
hn = 1950 eV and searched for the magnetic Bragg peak of the helical order at 200 K with hn = 640 eV. A 
neutron scattering study in the early days [4] reported helical ordering vector of ~(1,0,0.09) and ~(1,0,0.07), but 
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Figure 1 (a) Inverse triangular antiferromagnetic 
order of a Weyl semimetal Mn3Sn. (b) Cluster 
octupole moments responsible for the Berry 
curvature.  (c) Terahertz anomalous Hall effect in in 
the helical and inverse triangular spin structures. 



 

we did not detect the magnetic Bragg peak around (0,0,0.07) and (0,0,0.09). This is possibly because of small 
intensity of these peaks and/or because of different ordering vector in our Mn3Sn sample, as the magnetism of 
Mn3Sn is sensitive to the growth conditions and the amount of excess Mn.  

Therefore we moved on to RIXS measurement of the magnetic 
excitations in the inverse triangular state at room temperature, which has 
been well characterized by complementary neutron scattering studies. 
Figure 2 shows the electron-yield XAS spectrum of Mn3Sn, which 
dominantly reflects the electronic states close to the surface. Mn3Sn is a 
metallic alloy and therefore the shoulder structures seen below and above 
the main L3 peak are most likely due to oxide particles unavoidable at the 
surface (consistent with complementary Raman scattering studies). 
Nevertheless, the RIXS spectra show broad features typical of metallic 
systems reflecting the bulk electronic states of  Mn3Sn (see below).  

After the tuning of beamline conditions, the total energy 
resolution of 24 meV (in FWHM) was achieved, which enabled us to 
detect low-energy magnetic excitations. Within the allocated beamtime, 
we have collected RIXS data with s polarization for q = (H, 0) and (H, H) 
paths at 300 K, and with p polarization for q = (H, 0) and (H, H) paths at 
300 K and 200 K. We spent more time for the p polarization as it 
suppresses the charge elastic scattering and made the inelastic signal more 
visible. As a representative set of experimental data, we show in Figure 3 
the low-energy  RIXS spectra taken at 300 K with p polarization for the q 
= (H, 0) path (upper curves correspond to the low H values). The observed 
quasi-elastic peaks have asymmetric lineshape with broad tails in the 
energy loss side, which can be ascribed to magnetic excitations. 
Furthermore, the tails show momentum dependence with minima close to 
the G point (middle curves in Fig.3), which is consistent with q = 0 ordering 
vector of inverse triangular magnetic structure of Mn3Sn. We aim to 
carefully decompose the quasielastic peaks into the elastic peaks and 
magnetic excitations, to reveal the dispersion relation of the magnetic 
excitations. Note here that visual inspection of  the top and bottom curves 
(corresponding to (-0.45,0) and (0.45, 0), respectively) yields the small 
bandwidth of ~20 meV, highlighting the high resolving power of the 
ERIXS spectrometer. 

To summarize, despite the small bandwidth of magnetic excitations 
and broad lineshape of the metallic Mn3Sn, the experiment has been 
successfully completed thanks to the ultrahigh resolution of ERIXS around 
the Mn L3 edge.  Detailed data analysis for the extraction of magnon 
dispersion  is under way. In particular, the differentiation of magnon 
dispersion taken with 300 and 200 K will give us insight into the two 
topologically distinct magnetic phases, which will be the main focus of 
the forthcoming publication. As mentioned in the proposal, we also aim 
to perform a further RIXS experiment under uniaxial stress, as the strain tuning of magnetism has proven to be 
effective [5]. The expertise of MPI-Stuttgart on uniaxial strain experiments accumulated through former works 
on cuprate superconductors [6] will be crucial in planning future measurements.  
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Figure 2 Electron-yield XAS of Mn3Sn. 
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Figure 3 RIXS spectra of Mn3Sn at 
room temperature along the q = (H, 0) 
path. 


