European Synchrotron Radiation Facility

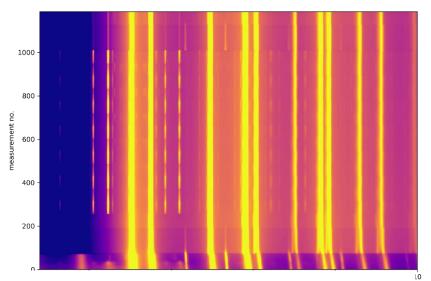
INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Experiment Report Form

ESRF	Experiment title: In situ PDF study on MOF-derived Nickel methanation catalysts under dynamic operation conditions	Experiment number: CH6069
Beamline:	Date of experiment:	Date of report:
ID15A	from: 18.01.22 to: 22.01.22	05.09.2022
Shifts:	Local contact(s):	Received at ESRF:
12	Stefano Checchia	
Names and affiliations of applicants (* indicates experimentalists):		
Nils Prinz*		
Sabrina Thomä*		
Benjamin Fahl*		
Leif Schwensow*		
Mirijam Zobel		
Institute of Crystallography, RWTH Aachen, Jägerstr. 17-19, 52066 Aachen		

Report:

With this proposal, we wanted to investigate how a dynamic gas feed during the reaction $4H_2 + CO_2 \leftrightarrow CH_4 + 2H_2O$ influences the structure of a Ni₃Fe catalyst. For this purpose we performed 3 experiments with changing gas feed, namely: Full hydrogen dropouts (activation of the catalyst in 100% H₂, followed by 30 min catalysis with 8 mL/min H₂ and 2 mL/min CO₂ followed by 30 min dropout with 0 mL/min H₂, 2mL/min CO₂, 8 mL/min He, overall 7 cycles), partial dropouts (activation, 30 min catalysis followed by 30 min dropout with 4 mL/min H₂, 2 mL/min CO₂, 4 mL/min He, overall 7 cycles), stochiometric dropouts (activation, 30 min catalysis followed by 30 min dropout with 4 mL/min H₂, 1 mL/min CO₂, 5 mL/min He, overall 7 cycles).


We collected the data using a Dectris Pilatus 3 CdTe 2M with an X-ray energy of 65 keV, which led to a Q-range of 0.7-30.8 Å⁻¹. We knew from earlier beamtimes with this detector, that strong scattering samples can produce a memory/ghosting effect. Therefore, we reduced the measuring time to 1 s, followed by 30 s sleep. The full dropouts revealed an interesting phase behavior of the Ni₃Fe alloy catalyst. At room temperature, the

sample consisted of mostly Ni_xFe_y alloy fcc structure, with sidephases of the corresponding oxides. This was expected, as the samples were stored under air. During the experiments the ratios of the sidephases changed (see Figure 1).

The conversion of CO₂ to CH₄ decreased with time on stream, visible in the decreasing MS signal of CH₄.

The experiments with partial and stochiometric dropouts of H_2 showed a less harsh response in the phase transition and the CO₂ conversion. We think that these results are of great value, especially for the catalysis community, that is trending towards catalysts that are comprised of more than one metal.

To study the structural behavior right after the gas feed change with a higher time resolution, we conducted a 4^{th} experiment under full H₂ dropout conditions, where we

Figure 1: *Heatmap of the PXRD patterns during full H*² *dropouts.*

reduced the frames per image to 100 ms, with a total 600 frames after the gas feed change. This resulted in several ten thousand datasets, which are still under investigation. The above experimental results will be connected to complementary XAS and XES data measured at DESY Petra III beamline P65 and P64, and the goal is to submit a publication during the second funding phase of the DFG priority program SPP2080.

Another experiment that we conducted was the tracking of structural deviations inside the catalyst bed, by applying a horizontal scan along the catalyst bed. We took 1 s measurements at 11 points with 1 mm distance and a 150x150 micron beam size. This data is still under study.

A reference catalyst consisting of NiO on an Al2O3 support synthesized by an urea precipitation method was also measured. We applied the same gas feed conditions as for the full H₂ dropouts described above.