

ESRF	Experiment title: Study of the crystal field strength in M _x U _y O _z compounds by resonant inelastic X-ray scattering	Experiment number: CH-6255
Beamline:	Date of experiment:	Date of report:
BM20	from: 5.04.2022 to: 11.04.2022	13.09.2022
Shifts:	Local contact(s):	Received at ESRF:
18	Elena Bazarkina & Kristina Kvashnina	
Names and affiliations of applicants (* indicates experimentalists):		
Gregory LEINDERS* Belgian Nuclear Research Center (SCK CEN) Institute for Nuclear Materials		
Sciences Boeretang 200 BE - 2400 MOL		
Kristina Kvashnina* Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Institute for Resource		
Ecology Bautzner Landstraße 400 DE - 01328 DRESDEN		
René BES*, Igor Prozheev* & Simon Orlat* University of Helsinki Department of Physics P.O.Box 64 FI - 00014 HELSINKI		

Ine ARTS* EMAT & NanoLab Center of Excellence, Dept. of Physics, University of Antwerp,

Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

Report:

The crystal field strength in KUO₃, NaUO₃ and RbUO₃ was investigated by means of high-energy-resolution fluorescence detected (HERFD) X-ray absorption spectroscopy (XAS) at the U L₃-edge.

We compared the substantial gain in resolution achieved by collecting the $L\beta_5$ emission line with the ROBL emission spectrometer coupled to the Si(311) monochromator, compared to the $L\alpha_1$ emission line collected with the Si(111) monochromator. The obtained spectra are shown in Figure 1.

Thanks to the gain in resolution, we have access to a very detailed uranium electronic structure as a function of the U surrounding geometry, varying from an almost perfect oxygen octahedra in KUO₃ to a distorted one in NaUO₃, and longer U-O distances in RbUO₃. Experimental spectra are now being interpreted using state of the art Density Functional Theory (DFT) calculations (FDMNES code). As shown in Figure 2, those calculations reproduce well the experimental features and they will provide a complete assessment on the uranium electronic structure and its behavior as a function of the geometrical changes in oxygen octahedra surrounding U, as previously demonstrated for KUO₃ in ref. [1]. For example, a direct evaluation of the crystal field was performed, providing a key parameter for accurate and predictive theoretical models in 5f chemistry.

In addition to the direct HERFD-XANES collection, we measured also the RIXS map using the Lb5 emission line. Example results for KUO_3 are shown in Figure 3. The RIXS maps are supporting the HERFD-XANES results, by demonstrating that the observed sharp features are indeed related to XANES and not to RIXS effects.

Those results are now being compiled and their interpretation finalized as a first scientific paper [2], as part of Simon Orlat PhD thesis.

Figure 1. Comparison of Uranium L₃-edge HERFD-XANES collected at the La₁ and the Lb₅ emission lines for UO₂, KUO₃, NaUO₃ and RbUO₃ samples. The blue vertical dashed lines are showing the changes in crystal field splitting of the U-6d shells, while the violet dashed vertical lines are indicating the changes in the XANES features.

Figure 2. FDMNES calculated spectra for KUO₃, NaUO₃ and RbUO₃

Figure 3. RIXS map of KUO₃ collected using the Lb5 emission line.

References:

[1] René Bes, Gregory Leinders and Kristina Kvashnina, Journal of synchrotron radiation 29 (2022).

[2] Simon Orlat, Igor Prozheev, Ine Arts, Gregory Leinders, Kristina Kvashnina and René Bes, Uranium 6dstates crystal field splitting in KUO3, NaUO3 and RbUO3. In preparation.