ESRF	Experiment title: Nitrides at ultra-high pressures: the Ca-N and Sr-N systems to 240 GPa	Experiment number : HC-4882
Beamline:	Date of experiment:	Date of report:
	from: April 5 2022 to: April 8 2022	09.08.2022
Shifts:	Local contact(s): Carlotta Giacobbe	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
Dominique Laniel* (University of Edinburgh)		
Leonid Dubrovinsky (University of Bayreuth)		

Report:

Objectives

The aims of these experiments were to *i*) synthesize novel Ca_xN_y and Sr_xN_y solids at ultrahigh pressures, *ii*) solve their crystal structure and, *iii*) determine their equation of state and stability domain. This study was expected to lead to more accurate physico-chemical models of alkaline earth-N interactions and, importantly, provide potentially game-changing first insights into the ultrahigh pressure chemistry of nitrogen and ultrahigh energy N-species. The knowledge obtained during these experiments will be key to inspiring new designs of ambient conditions polynitrogen-based materials and potentially unlocking the next generation high energy density material.

Results

BX90-type diamond anvil cells with culets of 40 to 80 µm were prepared. Calcium azide and strontium azide pieces were loaded along with molecular nitrogen, acting as a reagent as well as a pressure transmitting medium. Pressures were measured based on the equation of state of the Re gasket and verified with the first Raman edge of diamond^{1,2}. The samples were precompressed to the targeted pressures of 150 and 200 GPa and laser-heated to temperatures above 2000 K at our laboratory in Bayreuth. Preliminary Raman measurements showed new vibrational modes, suggesting the formation of Ca- and Sr-N compounds. These samples were brought to ID11 for single-crystal X-ray diffraction measurements of the synthesized phases.

Upon arrival at the ID11 beamline, it was found that one diamond anvil of the $Sr(N_3)_2+N_2$ cell at about 200 GPa had been broken during transportation, and that pressure had dropped down to 65 GPa. Measurements on the other $Sr(N_3)_2+N_2$, at 150 GPa, revealed the formation of the previously observed SrN_{16} (see experimental report HC-4225), as well as a phase which could not yet be solved due to twinning.

Experiments on Ca(N₃)₂+N₂, on the other hand, resulted in the synthesis of four Ca-N phases, CaN₅, α -CaN₆, β -CaN₆ and CaN₈, with all but α -CaN₆ being previously unobserved. Their structures, drawn in Figure 1, were fully solved by single-crystal X-ray diffraction. Remarkably, these four compounds are all comprised of exotic polymeric nitrogen chains. Those found in β -CaN₆ and CaN₈ are especially striking, adopting an arrangement never seen before, which can simplistically be described as chains of N₆ units. These are reminiscent of those found in the hexagonal layered polymeric nitrogen (HLP-N) phase—a phase of pure nitrogen that forms near 250 GPa.³

Figure 1: Experimentally determined crystal structures and polynitrogen units of the CaN₅ (a-b), α -CaN₆ (c-d), β -CaN₆ (e-f) and CaN₈ (g-h) compounds.

The comparison of the polynitrogen chains typically formed below 150 GPa and those at greater pressure underpins a clear trend. Polynitrogen chains below 150 GPa typically feature two-fold coordinated nitrogen atoms with shorter N-N distances. On the other hand, the β -CaN₆ and CaN₈ solids produced at higher pressures feature significantly more three-fold coordinated nitrogen atoms with longer N-N distances.

The decompression of these phases was initiated, but could not be completed within the allocated beamtime.

With the synthesis of four phases, including three new, the beamtime was undoubtedly a great success. Future experiments will again attempt the investigation of the Sr-N system at very high pressures and complete the decompression of the CaN₅, α -CaN₆, β -CaN₆ and CaN₈ compounds. This beamtime will result in at least one scientific publication.

References

- 1. Anzellini, S., Dewaele, A., Occelli, F., Loubeyre, P. & Mezouar, M. Equation of state of rhenium and application for ultra high pressure calibration. *J. Appl. Phys.* **115**, 043511 (2014).
- 2. Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 410 GPa. *J. Phys. Conf. Ser.* **215**, 012195 (2010).
- 3. Laniel, D., Geneste, G., Weck, G., Mezouar, M. & Loubeyre, P. Hexagonal Layered Polymeric Nitrogen Phase Synthesized near 250 GPa. *Phys. Rev. Lett.* **122**, 066001 (2019).