TACO Manual

version 2.0

November 2001

Abstract

TACO is a toolkit for implementing distributed object oriented control systems
originally developed at the European Synchrotron Radiation Facility (ESRF)! in
Grenoble (FRANCE). In TACO all control points are represented as devices. De-
vices are objects which belong to a control class. The class implements the control
logic necessary to control the device hardware/software. Devices are served by pro-
cesses called device servers. Device servers are distributed over one or any number
of machines. Clients which need to accesses devices do so through a application pro-
grammer’s interface. The clients can access devices synchronously, asynchronously
or by using events. The network layers are kept entirely hidden from the device
server and client programmer’s by TACO. TACO supports a database (based on
gdbm or Oracle) for storing persistant information and keeping track of where de-
vices are running and an archiving database (based on Oracle). There are 7 levels of
security for controlling client-server access. TACO supports the notion of multiple
TACO control systems. This facilitates management of a large number of devices
on a large site. TACO is available free of charge without warranties under the GNU
Public Licence.

 http://www.esrf.fr

Contents

1 Introduction

by A.Gotz 11
2 What is TACO ?
by A.Gotz 13
2.1 Imtroduction 13
2.2 System architecture L oL 13
2.3 Manager 13
2.4 Database e 13
2.5 Device Server Model 15
2.6 Application Programmer’s Interface 15
2.7 Data Collector e 15
2.8 Archiving 16
2.9 Security e 16
2.10 Multiple Control Systems 16
211 Uses of TACO o 16
3 Changes 19
4 Acknowledgements 21
5 Getting Started 23
6 Installing
by A.Gotz 25
6.1 Introduction. 25
6.2 Getting Started oL L 25
6.21 GNUmake 25
6.2.2 configure 25
6.23 makeall 26
6.24 makeinstall 26
6.25 maketest L 26
6.26 makeclean o 26
6.2.7 makeclobber00 26
6.2.8 Libraries. L 26
6.3 System processes u .o e e e 27
6.4 Databasetools 27
6.5 Testing e 27
6.6 Problems 27
6.7 Windows 28

7

10

TACO for Windows by W-D.Klotz and A.Gétz

7.1 Introduction.,
7.2 Imstallation,
7.3 Binary distributiono oL
7.3.1 Building the Text-to-Speech example
7.4 Source distribution 000000
7.5 The ONCRPClibrary
7.5.1 Portmapper.exe.
7.5.2 Rpcinfoexe oo oL
7.5.3 Rpcgenexe
7.5.4 RPC sample programs
7.6 Tips and Tricks for developers.
7.6.1 Printing debug messages
7.6.2 The startup.cfile
7.6.3 Important Window handles
7.7 Limitations
Platforms

Device Servers in C++
by A.Gétz and E.Taurel

9.1 Imtroduction.
9.2 Device Server Model ++
9.3 Devicerootclass,
9.3.1 Device.h-includefile
9.3.2 Device.cpp - source code file
9.4 PowerSupply class - an example superclass
9.4.1 PowerSupply.h-includefile
9.4.2 PowerSupply.cpp - source code file.

9.5 AGPowerSupply class - an example derived class

9.5.1 AGPowerSupply.h-includefile

9.5.2 AGPowerSupply.cpp - source code
9.6 startup.cpp - an example startup file
9.7 O0ICDevicewrapperclass

9.7.1 DICDevice.h-includefile.

9.7.2 startup.cpp-anexample
9.8 Implementation,
9.9 Compilers o
9.10 Template Class oo v i i v v i
9.11 C++ Programming Style
9.12 Advantages of C++
9.13 Disadvantages of C++
9.14 Future developments
9.15 Conclusion oo
9.16 Suggested Reading,

Device Server in C
by A.Gotz

10.1 Introduction
10.2 Historyo
10.3 The Device Server Model
10.3.1 Themodel
10.3.2 Thedevice
10.3.3 Theserver.

CONTENTS

CONTENTS 5

10.3.4 Therootclass. 69
10.3.5 The deviceclass 69
10.3.6 The resource database 69
10.3.7 The commands 69
10.3.8 Executing commands locally 71
10.3.9 Executing commands over the network 71
10.3.10 The application programmers interface 71
104 Objects In C L 72
10.4.1 MIT widgets o o 72
10.4.2 ESRF devices 73
10.4.3 Naming convention 73
10.4.4 Private (P.h) include files oL, 74
10.4.5 Public (.h) include files Lo 76
10.4.6 Source (.c) codefiles Lo L. 7
10.4.7 The device class C structure 80
10.4.8 Initialising the device class structure 81
10.4.9 The device C structure. 83
10.4.10Initialising the device structure 83
10.4.11 The template device 84
10.4.12Methods 84
10.5 How to write a Device Server 90
10.5.1 Synopsiso 91
10.5.2 Theteam 91
10.5.3 Understanding the device 91
10.5.4 Abstracting the device L. 93
10.5.5 Defining device commands, 94
10.5.6 Command data types 98
10.5.7 Designingo 99
10.5.8 Documentation L. 99
10.5.9 Coding o . e 100
10.5.10Debugging 100
10.5.11Testing o . 100
10.5.12Database support 104
10.5.13State machine L oL oo 104
10.5.14 Errors, Faults and Alarms 108
10.5.15Device server startup Lo 108
10.5.16 Advanced programming techniques 112
10.6 Using Classes v v i it it e e e e e e e e e 114
10.6.1 classes oo i e e e e 114
10.6.2 subclasses 114
10.6.3 superclasseso e e e e 115
10.6.4 subobjects. 116
10.7 Discussion o L Lo e e e e e e 116
10.7.1 Frequently Asked Questions 117
10.7.2 Limitations o e 118
10.7.3 Improvements Lo 118
10.8 Conclusion 119
11 DSAPI
by J.Meyer and A.Gotz 123
11.1 Introduction L L 123
11.2 What is DSAPI ? 123
11.3 Getting Started 124

11.3.1 “Hello World” (synchronous) example 124

6 CONTENTS
11.3.2 “Hello World” (asynchronous) example 127
11.3.3 Common Pitfalls 131
11.3.4 Nethost e s 131
11.3.5 Shared Libraries 131
11.3.6 Makefiles 132
11.3.7 Memory Allocation 134
11.3.8 Advanced Features 136
11.3.9 Timeouts 136
11.3.10Protocol 136

11.4 CLibrary e 137
11.4.1 Synchronous Client APT 137
11.4.2 ASynchronous Client APT 141
11.4.3 Server 142
11.4.4 General Purpose Functions 144

11.5 XDR types o o o e e e 147
11.5.1 Kernel Types oo it 147
11.5.2 Simple C Types o o 147
11.5.3 Combinations of Simple Types 148
11.5.4 Variable Length Arrays 148
11.5.5 Exotic Types 150

11.6 Changes e 151
116.1 Version 80 151
11.6.2 Version 7.0 e e 151
11.6.3 Version 6.0 e 151
11.6.4 Version 5.1 e e e 151
11.6.5 Version 4.1 e e 151
11.6.6 Version 3.37 e e e e e e e 151

12 Database guide - ndbm

by E.Taurel 155

12.1 Introduction 155

12.2 Device and resource definition 155
12.2.1 Thedeviceslist 155
12.2.2 Resource definition 156
12.2.3 Domain names and NDBM files 157

12.3 Greta e 157
12.3.1 Thedevice window 158
12.3.2 Theserver window 161
12.3.3 The resource window 161
12.3.4 The new server window 163
12.3.5 Theload file window 163
12.3.6 The Option menu 165
12.3.7 Other features 165

124 Resourcefile. 165

12.5 Utilities e e 166

12.6 Database administration commands 166
12.6.1 dbfillup 166
12.6.2 dbidnfo. e 166
126.3 dbread e 167

12.7 Database user commandso 167
12.7.1 db_updateo 167
12.7.2 db.devres e 168
12.7.3 db.devinfo.o 168

12.74 dbsservinfo 168

CONTENTS 7

12.7.5 db.devdel L 168
1276 dbresdel 169
1277 dbservdelo oL 169
12.7.8 dbservunreg 169
12.8 Security commands 169
12.8.1 dbmsecpasswdo 169
12.8.2 dbm=secobjinfo oo oL 169
12.8.3 dbmsec_userinfoo 169
12.9 The Clibrary o vt ittt e e 170
12.10Resource oriented calls oL 170
12.10.1db_getresource()o 170
12.10.2db_putresource() 170
12.10.3db_delresource()o 170
12.11Exported device list oriented calls. 171
12.11.1db_getdevexp()o 171
12.11.2db freedevexp() 171
12.12Device oriented calls 171
12.12.1db_getdevlist() 171
12.12.2db_devimport() 171
12.12.3db.devexport()o 172
12.12.4db_deviceinfo() L Lo L 172
12.12.5db_devicedelete() Lo 172
12.12.6db_devicedeleteres() Lo 172
12.12.7db_getpoller() L 173
12.13Server oriented callso oL 173
12.13.1dbsveunreg() a o 173
12.13.2dbsvecheck() L o 173
12.13.3dbservinfo() oo 173
12.13.4dbservdelete()o 174
12.13.5dbservunreg()o 174
12.14Database browsing oriented calls 174
12.14.1db_getdevdomainlist() L., 174
12.14.2db_getdevfamilylist() Lo oL 174
12.14.3db_getdevmemberlist() oL 174
12.14.4db_getresdomainlist() L. 175
12.14.5db_getresfamilylist() L., 175
12.14.6db_getresmemberlist()o oL 175
12.14.7db_getresresolist() 175
12.14.8db_getresresoval()o 176
12.14.9db_getdsserverlist() 176
12.14.1db_getdspersnamelist()o L L. 176
12.14.18b_gethostlist()o L 176
12.15Pseudo device oriented calls 176
12.15.1db_psdev.register() 176
12.15.2db_psdev_unregister() L. 177
12.16Database update calls 177
12.16.1db_analysedata() Lo 177
12.16.2db_upddev() L 177
12.16.3db_updres() 177
12.17Miscellaneous calls o oL 178

12.18Multi TACO control system access« v v v v v v v v v .. 178

8 CONTENTS

13 Events
by A.Gotz 181
13.1 Introduction Lo 181
13.2 Events L e 181
13.3 API . . o o e 182
13.3.1 Clientside. o 182
13.3.2 Serverside 182
13.4 Implementation L L L 183
13.5 Timeouts e 183
13.6 Exampleso 183
13.7 Performance e 184
13.8 Known problems o 185
14 The Signal Interface
by J.Meyer and J-L.Pons 187
14.1 Introduction L. 187
14.2 Conventions on Signals oL 187
14.3 The Signal Properties, 188
144 The Server Side e 188
14.4.1 The Commands to Access Signals. 188
14.4.2 Coding Example using a Multi Signal Object 190
14.5 Reading the Signal Properties without Accessing the Device 194
14.5.1 dev_getsigconfig() L 194
14.5.2 dev_get_sig-config fromname() 194
14.5.3 dev_getsiglist() 195
14.5.4 dev_getsigsetdist() 195
14.5.5 dev_getsigsetread fromname() 195
14.6 The Client Side« . o i i 196
14.7 The Signal Interfaceto HDB 198
14.8 Conclusion e 199

15 LabView for TACO

by A.Gotz 201
15.1 Introduction 201
15.2 Getting startedo 201
15.3 LabView-TACO interface 201

15.3.1 Clients i e e 201

15.3.2 Servers e e e e e e 204

15.3.3 Debugging. o 205
156.4 Types . . . o o v e e e e e 205
15.5 Known Problems 206
15.6 Future developments 207

16 Python and TACO

by M.C.Dominguez and J.Meyer 209
16.1 Introduction L. 209
16.2 Client interface e 209
16.3 Server interface e e 211

16.3.1 Example 1. 211

16.3.2 Example 2. L 214

CONTENTS

17 Access Control and Security

by J.Meyer
17.1 Introduction L.
172 The Problem
17.3 The Model
17.3.1 Users, Groups and Networks
17.3.2 AccessRights
17.3.3 Domain, Family or Member
17.3.4 Verification Speed and Reliability
17.4 Integration into TACO
17.5 Complex Access Handling
17.6 Conclusion e e
17.6.1 The Current Implementation
17.6.2 How to get started?,
17.6.3 Pending Problems

18 Standard Makefiles using GNU make (gmake)

by A.Gotz

18.1 Introduction L
18.2 Philosophy
18.3 GNU Make Commands
18.4 Standard Symbols
18.5 Standard Targets
18.6 Scripts . .« v v e e e e e
18.7 Example Makefile o oo oo
18.8 Further Reading

19 Basic steps to install and configure a device server

by A.Gotz

20 A tool to test a TACO control system

21

by E.Taurel

20.1 Introduction L
20.2 Usage o o i
20.3 Usageexample e
20.4 Testing a device server
20.5 Testing control system kernel servers
20.6 Testing all the device server runningonahost
20.7 Testing a complete control system

Adding Private Commands, Errors and XDR Data Types
by J. Meyer and A.Gotz
21.1 Introduction L L
21.2 Dynamic Errors
21.3 Error Numbers
21.4 Command Numbers
21.5 Database Supporto
21.6 Time Stamp for Error Messages
21.7 The restructured XDR concept
21.8 Private XDR Data Types,
21.8.1 Data Type Numbers

21.8.3 How to Integrate a New Data Type?
21.8.4 Available Data Types

217
217
217
218
218
218
219
220
220
221
222
223
224
227

229
229
229
229
230
230
231
231
238

239

241
241
241
242
242
242
243
244

252
255
255

10 CONTENTS
21.9 Numbering Limits o 256
21.9.1 Master Copieso 256
21.10Conclusiono 257
22 Interfaces 259
A Device Server Catalogue 261
Al Imtroduction. 261
A2 Motors 261
A21 Oregon (VME/PC-104) 261
A22 Galil (VME) 261
A.2.3 Flexmotion (¢cPCI) 262
A24 Huber (GPIB) 262
A.25 Berger (serialline) 262
A26 VPAP (VME) i 263

A3 CCD Cameraso i i i i it it 263
A3.1 Sensicam (PC/Windows) 263
A3.2 Matrox (PC/Windows) 263
A.3.3 Medoptics (PC/Windows) 264
A3.4 TImagepro (PC/Windows) 264
A35 Mar (PC/Linux) 264
A.3.6 Frelon (PCI/Linux/Solaris) 265

A4 Data Analysis 265
A4.1 Matlab (Unix/Windows) 265

A5 Sample Environmento 265
A.5.1 Linkam Thermal Stage (serial line) 265
A.5.2 TImpac Pyrometer (serial line) 266

A6 Input/Output 266
A.6.1 Wago (serial line / ethernet) 266
A.6.2 Redlion Thermocouple (serial line) 266
A63 ICVIS0 (VME) .« o oo 267
A6.4 ICVT712/ICVTI6 (VME)o i e 267
A65 ICVIOL (VME) o 267
A6.6 DM5210 (PC-104) . . o oo oo 267

A7 Counters/Timers 268
A71 Lecroy 1151 (VME)o . 268
A72 CAENV462 (VME) 268

A.8 Multichannel Analysers 268
A.81 Canberra AIM (PC/Windows or Unix) 268

A9 ImagePlates 269
A9.1 MAR345 (PC/LANUX) .« « v v ooooeeee e et 269

B Licence 271

Chapter 1

Introduction
by A.Gotz

TACO is a toolkit for implementing distributed object oriented control systems. It
has been used at the European Synchrotron Radiation Facility (ESRF) in Grenoble
(FRANCE) to control the accelerator complex and all beamlines. It is also used at
FRM II' in Munich (Germany) to control the beamlines and at the Hartebeesthoek
Radio Astronomy Observatory (HartRAQ)? in Hartebeesthoek (South Africa) to
control a 26 meter radio telescope.

TACO can be compared to other distributed object toolkits like CORBA, DCOM
and OPC (on Windows) with the main differences being : (1) TACO is easy to use
and understand, (2) TACO is freely available, (3) TACO is based on ONC/RPC
(now part of the GNU C library), (4) TACO is multi-platform.

In TACO all control points are represented as devices. Devices are objects which
belong to a control class. The class implements the control logic necessary to control
the device hardware/software. Devices are served by processes called device servers.
Device servers are distributed over one or any number of machines. Clients which
need to accesses devices do so through a application programmer’s interface. The
clients can access devices synchronously, asynchronously or by events. The network
layers are kept entirely hidden from the device server and client programmer’s by
TACO. TACO supports a database for storing persistant information and keeping
track of where devices are running.

TACO is used to control an accelerator complex, experimental setups on beamlines
(using synchrotron radiation and neutrons), a radio telescope and other smaller
projects. It is ideal for adding Ethernet control to embedded and non-embedded
devices in a research, industrial or home environment. Refer to the appendix for a
list of existing device servers.

This manual is a compendium of all important TACO documents which have been
written over the years by the various TACO programmers. This way there is only
one single TACO manual for all important TACO documentation. The information
is brought uptodate on a regular basis and should be useful to new and experienced
users of TACO.

TACO can be downloaded from the TACO website® and installed from the source
code. TACO is made available under the GNU Public Licence (see Licence) without
warranties. For news about recent developments in TACO go to the website.

This manual is organised as follows :

 http:/ /www.frmii.de
2http://www.hartrao.ac.za
3http://www.esrf.fr/computing/cs/taco

11

12

10.
11.
12.

13.
14.
15.

16.

CHAPTER 1. INTRODUCTION BY A.GOTZ

. Changes - list of changes to this manual.

Introduction - this text, should be read by everyone (it’s so short !).

What is TACO ? - provides a brief overview of what TACO is, useful for
newcomers to TACO.

Getting Started - for those who want to get going quickly without having to
read the manual.

Installing - how to install TACO from source code (basically the README
distributed with the source code).

Device Servers in C++ - how to write device servers in C++.

Device Server Application Programmer’s Interface - describes how to write
TACO clients in C and C++.

Database - describes the TACO ndbm database and how to write clients for
the TACO database.

Events - how to use and program events.
Signals - how to use and program normalised data types called signals.
Access Control and Security - a full description of TACO security.

Standard Makefiles - how to write TACO Makefiles using GNU make to main-
tain multiple platforms.

How to install a device server - basic steps on how to install a device server.
testcs - how to test a running TACO system.

Private commands, errors and xdr types - how to extend TACO to add private
commands, errors and data types. system.

Licence - the full text of the GPL licence.

For more information about TACO refer to the website regularly or subscribe to
taco@esrf.fr by sending an email to majordomo@esrf.fr with subscribe taco
in the body of the email.

Chapter 2

What 1s TACO ?
by A.Gotz

2.1 Introduction

TACO is an object oriented control system originally developed at the European
Synchrotron Radiation Facility. The basic idea behind TACO is to treat every
control element as an object on which commands can executed. The objects are
called devices and they are available network wide. Devices are created and stored in
device servers. The commands which can be executed on a device are implemented
in the device class. Device classes can be written in C (using a methodology called
OIC) or C++. The commands are accessed via a small set of C calls referred to as
the application programmer’s interface (DSAPI).

2.2 System architecture

TACO is based on a client-server model. All devices are created and served by device
servers. Clients access devices via a network transparent application programmer’s
interface (DSAPI). In addition to device servers there are so-called system servers-
the manager and database which provide system services. There is no a-priori limit
to the number of device servers and clients. This makes TACO very scalable.

2.3 Manager

The manager is the only fixed point in the whole TACO control system. It is used
as a single entry point to start and stop the control system. All clients (including
device servers) of the control system connect to the Manager before anything else.

2.4 Database

TACO supports a simple database called the resource database where all configura-
tion parameters for devices are stored. The database is served by a database server.
All values are stored as ascii strings which are then converted to the correct types
at runtime in the calling process (device server). All C simple types and array of
simple types are supported. The GNU ndbm database available under Unix and
Windows is used as database.

13

14 CHAPTER 2. WHAT IS TACO ? BY A.GOTZ

|

Device Device
Server 0 o oD
1

device| | devicd | devicd | dewice

1 2 1 3 4 6 o 0

TACO — basic system architecture

Figure 2.1: TACO system architecture

2.5. DEVICE SERVER MODEL 15

2.5 Device Server Model

One of the most fundamental aspects of TACO can be found in the implementation
of device access in the device servers. All device control (input/output) is imple-
mented in the device servers. Device servers are implemented according to a model
known as the device server model (DSM). In the DSM all devices (physical and
logical) are treated as objects. Each object belongs to a device class. The class
implements the actions necessary for each device type. The actions (referred to as
commands) can be executed locally or via the network.

The device class implements methods and actions. The actions can be considered
as special methods which can be executed by local and remote clients. They have a
fixed number of input and output parameters where the parameters can be simple
or complex (self-defined) types.

2.6 Application Programmer’s Interface

The device server model is used for implementing device access in TACO. Users of
the control system on the other hand have a ”black box” view of the control sys-
tem. They access the control system either via a high-level programming language
(C, C++, Tcl, Spec) using the device server Application Programmer’s Interface
(DSAPI) or using one of the graphical applications which have been written.

The DSAPI consists the following basic calls :

1. dev_import()- import or build up a connection to a device

2. dev_putget() - execute a command on a device

3. dev_putget_async() - execute a command n a device asynchronously
4. devfree() - free the device

In addition to these calls there are a number of calls for modifying the network
communication parameters, interrogating the state of an asynchronous command
execution and for managing device security. All network calls to and from the
device server are implemented using the Sun Open Network Computing / Remote
Procedure Call (ONC/RPC). The ONC/RPC is available on all platforms where
the Network File System (NFS) is implemented. The ONC/RPC uses the eXternal
Data Representation (XDR) format to encode data sent on the network.

2.7 Data Collector

The data collector is a huge distributed shared memory for storing intermediate
results of commands from ”real” and ”pseduo” devices. Real devices are devices
which are served by a device server. Pseudo devices are devices which only exist in
the data collector. They have no corresponding device class or server. The data col-
lector system is distributed over multiple computers. It is used to cache command
results for multiple clients. The pseduo devices are a very useful mechanism for dis-
tributing information normally stored in applications or calculated values. Because
the data is cached the data collector can be used to solve bottlenecks which arise
when many clients request the same value from a device.

The data collector has accessed through an object oriented API very similar to the
DSAPI.

16 CHAPTER 2. WHAT IS TACO ? BY A.GOTZ

2.8 Archiving

The long term data archiver in TACO (HDB) is based around a commercial database
(Oracle). Using HDB it is possible to do long term archiving over years with a mini-
mum time resolution of 10 seconds. HDB supports 6 different modes of archiving for
single values and/or groups of values. HDB offers tools for configuring the database
and extracting data. The extracted data are available directly from a C program via
a C API or from a Wingz spreadsheet. HDB also offers tape archiving for offlining
parts of the data base.

2.9 Security

TACO supports secure device access in a network environment. Security is imple-
mented at the device command level. Each device command has its own level of
security. Six levels of security are defined :

e READ

e WRITE

e SINGLE_WRITE

e SUPER_USER

¢ SINGLE_SUPER_USER
e ADMIN

It is possible using TACO security to ”protect” devices from illegal accesses in a
networked environment (e.g. Intranet or Internet) and to allow only those users who
are authorised and who are logged onto authorised computers to access devices.

2.10 Multiple Control Systems

TACO supports the concept of multiple control systems. Each control system has
its own database and device servers. Clients and servers of different control systems
can communicate with each other as if they were part of the same control system.
To specify a device in a diiferent control system a device must be specified with its
full name :

//nethost/d/f/m

Where nethost is the name of the host where the database of the second control
system is running. This concept is sometimes referred to as multi-nethost in the
documentation.

2.11 Uses of TACO

TACO is a toolkit for building distributed objects. Any application which can profit
from encapsulating functionality into objects and distributing them over more than
one host on the network can find a use for TACO. Control systems are one very
good example of this and TACO was developed mainly for doing distributed con-
trol. All control systems need to control hardware. The hardware can be in a the
same computer or more often than not in a variety of computers and black-boxes.
It is the job of the control system to coordinate the different hardware. Examples

2.11. USES OF TACO 17

of hardware are stepper motors, cameras, powersupplies, detectors, adc’s, dac’s but
could even be coffee machines or light switches in the case of home automation.
TACO is ideal for encapsulating hardware functionality in a device server and ex-
porting it on the network e.g. for embedded controllers. These are called tacobozes
amongst TACO users. GNU/Linux is an ideal candidate as underlying operating
system.

TACO can also be used to distribute pure logic where no hardware is involved e.g.
for doing image processing, or for sharing data between applications.

TACO has been used in the research environment (synchrotron radiation sources,
reactors and telescopes) but is also being used to control robots and soon in the
home to automate light switches, heaters, messaging systems etc.

18 CHAPTER 2. WHAT IS TACO ? BY A.GOTZ

Database

Device § erver

(process)

—
DevEerver 7
[root class

{DIC/C++)

Manager

super class

— ::
——————
Powenupply‘
{OLCAC++)
—
—.,
AGFowerSupp D

sub class
{OIC/AC++)
—J

powersupply powersupply
device | { device

Schematic of Device Server Model (DSM) for a typical powersupply

Figure 2.2: TACO Device Server Model for a typical PowerSupply

Chapter 3

Changes

Here is a list of changes in the TACO manual :
e V2.0

— added chapter on ”Device Servers in C”
— added chapter on ”Labview and TACO”
— added chapter on ”"Python and TACO”

— added appendix of ”"Device Server Catalog”
e V1.1

— added section on Changes (this section).

— documented the use of dynamic error messages (cf. chapter on DSAPI
and chapter on Private Command and Errors).

19

20

CHAPTER 3. CHANGES

Chapter 4

Acknowledgements

A lot of people have contributed to TACO since its beginning. The following people
have contributed to the kernel of TACO in the form of system programming, bug

fixes,

ports etc :
Martin Diehl (FRMII) - bug fixes

Andy Gotz (ESRF) - device server model, asynchronism, events, dsapi
Markhu Karhu (ESRF) - (original) ndbm database server

Wolf-Dieter Klotz (ESRF) - Windows port

Jens Meyer (ESRF) - dsapi, dsxdr, security, manager

Jon Quick (HartRAOQ) - bug fixes

Bjorn Pederson (FRMII) - bug fixes, improvements to events

Emmanuel Taurel (ESRF) - rtdb, Oracle and ndbm database server, dbapi,
hdb

The following people have written client interfaces to TACO :

Marie-Christine Dominguez (ESRF) - Python clients
Laurent Farvacque (ESRF) - Mathlab

Andy Gotz (ESRF) - Labview

Jens Meyer (ESRF) - Python servers

Gilbert Pepellin (ESRF) - Tel

Faranguiss Poncet (ESRF) - xdevmenu

Gerry Swislow (CSS) - SPEC

TACO would not be of much use without the device servers therefore it is only fair
to mention the (long and incomplete) list of device server programmers :

A.Beteva (ESRF), D.Carron (ESRF), J.M.Chaize (ESRF), M-C.Dominguez
(ESRF), F.Epaud (ESRF), L.Farvacque (ESRF), D.Fernandez (ESRF), A.G6tz
(ESRF), S.Hunt (SLS), W.D.Klotz (ESRF), M.Konijnenberg (AFOM), P.Makijarvi
(ESRF), J.Meyer (ESRF), J.Neuhaus (FRM IT), W.Ohme (Rossendorf), B.Pederson
(FRM II), C.Penel (ESRF), M.Perez (ESRF), M.Peru (ESRF), J.L.Pons (ESRF),
J.Quick (HartRAO), B.Regad (ESRF), V.Rey (ESRF), L.Roussier (Lure),
B.Scaringella (ESRF), M.Schofield (ESRF), F.Sever (ESRF), E.Taurel (ESRF),
P.Verdier (ESRF), R.Wilcke (ESRF), H.Witsch (ESRF)

21

22

CHAPTER 4. ACKNOWLEDGEMENTS

Chapter 5

Getting Started

How to get started with TACO ? The best way is to download it and install it
first. Once it is compiled for your platform start the TACO manager and database
servers. Start a test device server and client to see if everything is working. The
final step is to write your own device server for your hardware and own client for
your application and start them. Voila you have a working TACO control system !
Here is a step by step description of the above recipe :

1. downloading - TACO can be downloaded from
ftp://ftp.esrf.fr/pub/computing/cs/taco/src_release_Vx.y.tar.gz

where x.y is the latest version of the TACO source code release (2.6 in July
2000). Download using anonymous ftp (login=anonymous, password=your
email address) e.g.

cd ~/pub/cs/taco
bin
get src_release_Vx.y.tar.gz

quit

2. unpacking - unpack the source code in a directory where you have sufficient
free space for compiling using tar e.g.

tar -xzvf src_release_Vx.y.tar.gz

3. compiling - position your TACO home directory (DSHOME) to the place
where you want TACO to be installed (normally the same directory where
you unpacked it), run configure and then make and make install :

export DSHOME=‘pwd‘
./configure
make all
make install
4. testing - test TACO has correctly compiled and installed :

make test

write a device server - copy the test device server or a template and adapt it
to your hardware, compile it

23

24 CHAPTER 5. GETTING STARTED

5. install device - create a device entry in the TACO database :
db_update TEST/mydevice.res
start TACO - start TACO manager and database :
etc/taco.startup

6. start device server - position NETHOST and start your device server

export NETHOST=‘hostname*
myds test&

7. start your client - start your client and test your device server !

Chapter 6

Installing
by A.Gotz

6.1 Introduction

TACO has been developed at the ESRF about 10 years ago but has only recently
been started to be used by groups external to the ESRF. It is obvious that to give
these external groups as much autonomy as possible they need access to the source
code. To satisfy this request the TACO source code release has been prepared. It
is basically a copy of the source code development tree maintained at the ESRF.
In order to make a quick release not much effort has gone into changing up the
directory tree structure and source code. What you have on your disk is a copy of
the latest release of the Unix development tree. The main aim is to allow external
users to have access to the source code and (re)compile for whatever (Unix) platform
they need to. For Windows compilation look under WINDOWS.

6.2 Getting Started

6.2.1 GNU make

The release is organised with a main Makefile which calls the underlying Makefiles
for compiling the different packages. All the underlying Makefiles are based on
the GNU Make which supports conditional statements. Before trying to compile
anything you must have a version of GNU make which is accessible from your
$PATH environment when you type "make”. GNU make is standard with Linux.
For other platforms you can find a release of GNU make in the directory ” gmake”
with this release. Configure, compile and install it for your platform if you don’t
have it.

6.2.2 configure

In order to simplify compilation + installation a simple script called ”configure” is
povided which prompts for what platform you want to compile on. Run configure
by typing ”./configure” and answer the questions. Before running configure set the
environment variable DSHOME It will also prompt for the TACO home directory
($DSHOME) where you plan to keep all the TACO libraries and include files. This
could be anywhere. At the ESRF we normally have a user account ”dserver” which
we use as home directory for TACO.

25

26 CHAPTER 6. INSTALLING BY A.GOTZ

If you need the TACO libraries to be compiled with additional CFLAGS (e.g.) -
D_REENTRANT) for your system then it is possible to set and environment variable
EXTRACFLAGS before calling configure. This will be added to CFLAGS during
compilation of all libraries (DSAPI, DSXDR, DBAPI). The configure script prompts
for this flag.

6.2.3 make all
Once you have configured the platform you can call “make all” to make all the
libraries and system processes.

6.2.4 make install

Will copy the libraries and include files to SDSHOME/1ib/$0S and $DSHOME /include.
Some of the libraries and incldue files are copied when you do ”"make all” as part of
the TACO boot-strapping process. Will also remake dsapi and dsapi++ because of
the "make clean” rule in the makefile.

6.2.5 make test

Will fill the TACO database up with some default resources, start a TACO Manager
and then start a test device server (Inst_verify) and client (Inst_verify_menu).

6.2.6 make clean

Will remove all object files.

6.2.7 make clobber

Will do a clean and remove all libraries. It is a good idea to do a clobber before
compiling on a new platform to avoid mixing object files and/or libraries.

6.2.8 Libraries

The TACO system has three fundamental libraries - DSAPI, DSXDR and DBAPI.
These libraries are fundemental to creating any TACO server or client. The source
code release contains all the source code for them and Makefiles for generating
archive and shared library versions. They can be found in the following directories

DSAPI - ./dserver/system/api/apilib/src
./dserver/classes/main/src
./dserver/classes++/device/src

DSXDR - ./dserver/system/xdr/src
DBAPI - ./dbase/src

The libraries are installed in :
./1ib/$0S

The corresponding include files in :

./include
./include/private

6.3. SYSTEM PROCESSES 27

6.3 System processes

TACO requires three system process to run - the Manager, Database and Message
servers. The source code release contains the source code and Makefiles to generate
them. They can be found in :

MANAGER - ./dserver/system/manager/src
DBSRVR - ./dbase/server/src

MSGSRVR - ./dserver/system/msg/src
Once compiled they are installed in :

./system/bin/$0S

6.4 Database tools

TACO supports a simple database based on the GNU DBM library. DBM is based
on a single key and one file per table. Some tools are provided for analysing the
contents of the database. They can be found in :

DBTOOLS - ./dbase/tools/src
Once compiled they are installed in :

./system/bin/$0S

6.5 Testing

This release assumes you have a running TACO installation and know a bit about
TACO. If this is your case all you need to do is point your shared library path
(SLD_LIBRARY_PATH on Linux/Solaris) to the directory where you have created
the shared libraries and restart your device server/client. Alternatively you can
recompile you device server/client if you are using archive libraries. The main
advantage of the source code release is you will be able to modify and generate new
versions of the TACO libraries at will now.

If you have never used TACO before then you better send an email to ”taco@esrf.fr”
for more detailed instructions. In brief you have to start setup a database, start
the Manager and then start as many device server/clients as necessary. Device
server/clients which know about your hardware will have to be written. An ex-
ample for C++ can be found in dserver/classes++ /powersupply. It consists of a
superclass PowerSupply.cpp and the subclass AGPowersupply.cpp- A second exam-
ple of a real device server for controlling a serial line under Linux can be found in
dserver/classes++ /serialline. An example for C (using the Objects In C methodol-
ogy) can be found in dserver/classes/instverify.

6.6 Problems

Of course you will have some. Please report them to ”taco@esrf.fr”. and we will do
our best to answer you and include your problem in this section in the future.
Here is a (non-exhaustive) list of problems you can encounter :

28 CHAPTER 6. INSTALLING BY A.GOTZ

o the database server does not compile correctly - the most likely reason is that
you do not have the a version of the GNU C++ compiler which includes the
standard C++ library. Make sure you have it. You can download it from
the web for Solaris from http://www.sunfreeware.com. For Linux it comes
packaged with the distributions SuSE 6.1 and RedHat 5.2. If you do not have
one of these distributions you can download the egcs compiler (the new gcc)
from http://egcs.cygnus.com.

6.7 Windows

This source code release is intended only for Unix platforms. If you need the Win-

dows port which uses Visual C++ then refer to the web page http://www.esrf.fr/computing/cs/taco/dsapiNT
where you can find a source code distribution for Windows (based on DSAPI

V5.15).

Chapter 7

TACO for Windows by
W-D.Klotz and A.Gotz

7.1 Introduction

TACO for Windows exists since November 1997. It is being used more and more to
interface detector systems, OPC based SCADA system and other software running
under Windows. The original Windows port was done using the version V5.15
of the DSAPT of TACO. It has been recently updated with the latest versions of
all the libraries - DSAPI=V8.29, DBAPI=V6.12, and DSXDR=V5.20. The main
difference is that TACO on Windows now supports asynchronism and events. It is
therefore fully compatible with the most recent versions of TACO for Windows. A
new port of TACO C++ device server library to Windows is on the way and will
hopefully be finished before the end of November 2001. This chapter describes the
V8.29 port of the C version DSAPI and associated TACO libraries to Windows. It
supports writing TACO device servers and clients under Windows 95/98/NT and
2000. A port of the ndbm version of the TACO database server and manager exists
but is not available as package. It can be downloaded on request (send an email
to taco@esrf.fr). The following text describes how to download and install the
Windows port of TACO and an example device server.

This document describes how to install and use the device server libraries (libd-
sapi.lib, libdbapi.lib, libdsxdr.lib) and the ONC RPC (oncrpc.lib) on Windows NT
and Windows 95/98. Once installed on your target computer, you can develop
TACO device servers and TACO clients written in ANSI C.

The libraries have been developed and tested on Windows 95/98 and Windows
NT4.0. With the exception of the ONC RPC library, libraries are created as static
libraries. All libraries have been compiled with MS Visual C++ Version 6.0, and
are delivered as Release versions.

The libraries are distributed in two packages:

1. Binary, comprising the libraries, header files and a sample client /server appli-
cation with sources, project- and makefiles.

2. Source, comprising in addition to the binary distribution all source code, that
allows you to rebuild the libraries yourself on your target system.

All executables and libraries in this distribution have been compiled as Win32-
Release versions. For details on compiler flags etc. you have to look into the
corresponding makefiles, i.e. files with the extension .mak.

The current libraries are based on DSAPI revision 8.29

29

30 CHAPTER 7. TACO FOR WINDOWS BY W-D.KLOTZ AND A.GOTZ

The zip file for the TACO Windows release can be found on our ftp server!. Ad-
ditional archives mentioned below are also available on our ftp server?. Additional
products that you need The Taco device server libraries are based on SUN’s ONC
RPC. This RPC has been ported to 32 bit Windows starting from the original
source code, which is freely available for UNIX from SUN. The library is named
oncrpc.lib and linked into a dynamic link library oncrpc.dll. It is based on the Win-
dows Socket definition from MicroSoft. You can get the tested ONC RPC library
from our ftp server. The C/C++ compiler used to build this release was Microsoft
Visual C++ version 6.0. For the Text-to-Speech sample server you need Microsoft’s
Speech SDK and an additional DDE server (TTSApp.exe). Both are available from
our ftp server.

7.2 Installation

All files are bundled in a single zip archive (16 MB). You have to extract files from
the archive. During extraction files and directories will be created relative to the di-
rectories /taco/dbase and /taco/dserver. If you do not extract to the root directory
of your current disk, you have to change path-specifications in the corresponding
makefiles or project files. To avoid this work, it is strongly recommended to install
everything in the root directory! Doing so you will get the following directory tree
structure:

C:\TACO\DBASE

+-—-res
+---clnt
+-—-svc
+ +---rtdb
+---win32

+ +-—-Debug
+ +-—-Release
+---include

C:\TACO\DSERVER
+---dev

+ +---classes

+ + +---main

+ + + +-—-—-8rc

+ + + +-—--include

+ +--—-system

+ + +-—-api

+ o+ + +---admin

+ o+ + + +---include

+ + + +---apilib

+ + + + +---include

+ + + + +---src

+ o+ + + +---win32

+ + + + + +---Debug
+ + + + + +---Release
+ + + +-—-cmds_err

+ o+ + +---include

+ + + +-—--res

Lftp:/ /ftp.esrf.fr/pub/cs/taco/taco_win32_v8_29.zip
2ftp:/ /ftp.esrf.fr/pub/cs/taco/dsapiNT/

7.3. BINARY DISTRIBUTION 31

+ + + +—-——-8rcC

+ + +-—-xdr

+ o+ + +-—--include

+ + + +—-——8TrC

+ o+ + +-—--win32

+ o+ + +-—-Debug
+ + 4+ +---Release
+ + +---dc

+ + 4+ +---include

+---include
+-—-classes

+ +---powersupply

+ + +---ag

+ + + +---include

+ + + +-——-src

+ + + +-—-win32

+ + + +-—-ps_menu
+ + + + +---Release
+ + + +---Release
+ + +---src

+ + +--—-include

+ +---TextTalker

+ +---Release

+ +-—-—-srcC

+ +---include

+ +-—-TextTalker_menu
+ +-—-Release
+---1ib

+ +-—-win32

+ +-—-Debug

+ +---Release

7.3 Binary distribution

If you plan to develop new device servers and client applications only, you should
use the binary distribution. To get the binary distribution, you have to extract the
following directories with all their subdirectories:

e taco/dserver/classes
e taco/dserver/include

e taco/dserver/lib

In the directory /taco/dserver/lib/win32/Release you will find the files:

e DSMain.res a resource file that has(!) to be linked with every device server
(do not modify it!);

e libdbapi.lib a library to access the static data base;
e libdsapi.lib the main DSAPI library;
e libdsxdr.lib a library with XDR filter routines.

e libtts.lib a library used by the TextTalker sample application.

32 CHAPTER 7. TACO FOR WINDOWS BY W-D.KLOTZ AND A.GOTZ

e oncrpc.lib the ONC RPC import library.
e oncrpc.dll the ONC RPC dll.

In the directory /taco/dserver/lib/win32/Debug you find the same files as WIN32
Debug versions. The directory /taco/dserver/include comprises all .h header files
of this release. Building the AGPowersupply sample client/server pair. In the
directory dserver/classes/powersupply/ag/win32 you will find

o Agpsds.mak the common makefile , and
e Agpsds.dsw the common project file
e Agpsds.hpj the help project file to genereate Agpsds.hlp.

for the ag-powersupply device server and the ag-powersupply menu client.

Look into the Win32 Release configuration of the makefile if you want to understand
how to set compiler flags when you build a server or a client. When you compile the
source files on NT or Windows 95/98 you have to define the preprocessor macros
NT, WIN32, WINDOWS.

In the directories

e taco/dserver/classes/powersupply/ag/win32/Release
e taco/dserver/classes/powersupply/ag/win32/ps menu/Release

you will find a ready to run server - AGpsds.exe, and a client that knows this server’s
commands - ps_menu.exe.

Hint: To satisfy the precompiler on my machine, I had to set the /I compiler
directive as follows: /I ”../include” /I ”../../include” /I ”/taco/dserver/include”
/1/ ” [taco/oncrpe/win32/include”

Hint: To satisfy the linker, we had to link with the following libraries:

libdsapi.lib libdsxdr.lib libdbapi.lib oncrpc.lib version.lib
wsock32.1ib kernel32.1ib user32.1ib gdi32.1ib winspool.lib
comdlg32.1ib advapi32.1ib shell32.1ib ole32.1ib oleaut32.1ib
uuid.lib odbc32.1ib odbccp32.1ib comctl32.1ib

and set the library path to:
/libpath:"/taco/dserver/lib/win32/Release"

Hint: Use the find facility to search for the correct location of header files and
libraries if you don’t succeed to compile and link the samples. And study the
makefiles!

7.3.1 Building the Text-to-Speech example
In the directory taco/dserver/classes/TextTalker you will find
o TextTalker.mak the common makefile for server and client
e TextTalker.dsw the common project file for server and client
e TextTalker.hpj the help project file to generate TextTalker.hlp.

Look into the Win32 Release configuration of the makefile if you want to understand
how to set compiler flags when you build a server or a client. When you compile the
source files on NT or Windows 95/98 you have to define the preprocessor macros
NT, WIN32, WINDOWS.

To link the server we had to set the following linker options:

7.4. SOURCE DISTRIBUTION 33

libdsapi.lib libdbapi.lib libdsxdr.lib 1ibTTS.1lib oncrpc.lib
version.lib wsock32.1ib kernel32.1ib user32.1ib gdi32.1ib
winspool.libcomdlg32.1ib advapi32.1ib shell32.1ib ole32.1ib
oleaut32.1ib uuid.libodbc32.1ib odbccp32.1ib comctl32.1ib
/subsystem:windows /incremental:no/ /pdb:"$(0UTDIR)/TextTalkerds.pdb"
/debug /machine:I1386/ /out:"$(0UTDIR)/TextTalkerds.exe"
/libpath:"/taco/dserver/lib/win32/Release"

The server (TextTalkerds.exe) needs a slave server (TTSApp.exe) to run correctly.
TTSApp.exe is a DDE server, that receives requests either interactively from it’s
GUI or through DDE messages. TextTalkerds.exe uses these DDE messages as in-
terface to Microsoft’s text to Speech engine. That means that you have to install
Microsoft’s Speech SDK and the TTSApp.exe server before you can use TextTalk-
erds.

You find Microsoft’s Speech SDK as a self-extracting archive on our ftp server called
sdk30s.exe (11,799KB) and the TTSApp project called ttsapp.zip. (166KB)

To start TextTalkerds.exe, you first start manually TTSApp.exe, and then TextTalk-
erds.exe, or you copy TTSApp.exe into your system PATH. TextTalkerds will launch
TTSApp automatically if it is in the system PATH.

7.4 Source distribution

If you want to rebuild the libraries, you have to use the source distribution. When
you extract the directories

e taco/dbase
e taco/dserver/dev

with all their subdirectories from the archive, you get the source distribution.
Look into the files

e taco/dbase/res/win32/dbapilib.mak
e taco/dserver/dev/system/api/apilib/win32/libdsapi.mak
e taco/dserver/dev/system/xdr/win32/xdrlib.mak

for the makefiles of these libraries.
Look into the files

e taco/dbase/res/win32/dbapilib.dsw
e taco/dserver/dev/system/api/apilib/win32/libdsapi.dsw
e taco/dserver/dev/system/xdr/win32/xdrlib.dsw

for the project files for Microsoft Visual C++ 6.0.
Compiling the libraries is harder. You should first have successfully compiled the
sample applications in the binary distribution, before attempting that.

7.5 The ONC RPC library

The ONC RPC library is packaged in the same zip file. When you unzip this archive
in the root directory of your hard disk you get the following directory structure:

34 CHAPTER 7. TACO FOR WINDOWS BY W-D.KLOTZ AND A.GOTZ

C:\TACO\DNCRPC

+---win32
+---drivers
+ +-—-—etc

+-—-1librpc

+ +---1ib

+ +---Release
+ +-—-Debug

+---rpcgen
+---rpcinfo
+-—-service
+-——test
+---wintest

+ +---versl

+ +-—-Release
+---bin
+---include

+---rpc

In the project file for Microsoft Visual C++ 6.0® oncrpc.lib and oncrpe.dll are found
in the Release and Debug directories, respectively. All .h header files are placed in:
/oncrpe/win32/include.

You have to copy oncrpe.lib to /taco/dserver/lib/win32/Release to build the Release
versions of the DSAPI libraries or sample applications. You also have to copy
./Release/oncrpe.dll to the Windows system directory c:/winnt/system32, before
running the Release versions. The same holds for the corresponding files in ./Debug
if you want to build and run the Debug versions.

If you want to build the oncrpc library yourself, you have to define the preprocessor
macro _X86_ on Intel platforms.

7.5.1 Portmapper.exe

Portmapper has to run on your computer before you start any device servers. The
makefile and sources for portmapper are in /taco/oncrpce/win32/service. The make-
file or project file creates two applications portmap.exe and inst_pm.exe. For W/NT
portmapper has to be started as a system service. To register portmapper as sys-
tem service you use the helper inst_pm. With the ControlPanel/Services utility
you can define the statup mode of portmapper. On Windows 95/98 portmap.exe
is a different executable!! You have to start portmap.exe on reboot by an entry
in ‘autoexec.bat’ When you rebuild portmap.exe you have to modify the makefile
according to your system. Read the first lines of the makefile! You have to set OS
either to _NT or _-W95.

7.5.2 Rpcinfo.exe

rpcinfo.exe is a utility known to UNIX users. It allows you to interrogate portmap-
per’s port tables on you local or any remote host that runs portmapper. In the
makefile you have to set OS either to _-NT or _W95 if you want to build the exe-
cutable from scratch.

3 /taco/oncrpc/win32/librpc/lib/oncrpe.dsw

7.6. TIPS AND TRICKS FOR DEVELOPERS 35

7.5.3 Rpcgen.exe

rpcgen.exe is the RPC IDL compiler. It generates C-stub source code and xdr-filter
source code according to your protocol definition in your IDL-file. In the makefile
you have to set OS either to _NT or “W95 if you want to build the executable from
scratch. Don’t mind the many warning messages during compilation, rpcgen.exe
works nevertheless!

7.5.4 RPC sample programs

cousvc.exe and do_cou.exe are a server/client pair to test the ONC RPC library.
They are both simple console applications. cou_svc.exe in the directory wintest/versl
is the same RPC server as a Windows application.

7.6 Tips and Tricks for developers

7.6.1 Printing debug messages

The standard text output I/O library functions printf, fprintf, ? etc do not work on
Windows. TextOut(0 is Windows way to display a string in a window’s client area
at specified coordinates. Apart from that Windows provides only minimal support
for text output to the client area of a window. To simplify this problem, the DSAPI
library provides a set of functions similar to printf.

The library provides a global integer that can take values between 0 - 4 to describe
different debug levels:

0 no debug output, like standard printf

1 level adds error messages,

2 level adds trace messages,

3 level adds more details on trace and errors,
4 level adds dumps of data.

extern int giDebuglevelj; // 0 is default

The library provides two functions to manipulate this global:

extern void SetDebuglevel(int i);
extern int GetDebuglevel();

The library provides a replacement function to printf that accepts as the first argu-
ment a format string compatible with the formats printf uses, followed by a variable
list of arguments:

extern void cdecl DbgOut (LPSTR lpFormat, ...);

Instead of calling DbgOut directly, you should use one of the following macros in
your code for the corresponding debug level as stored in giDebugLevel.

#define dprintf DbgOut
#define dprintfl if (giDebuglevel >= 1) DbgOut
#define dprintf2 if (giDebuglevel >= 2) DbgOut
#define dprintf3 if (giDebuglevel >= 3) DbgOut
#define dprintf4 if (giDebuglevel >= 4) DbgOut

There is another helpful macro defined in the header file macros.h:

36 CHAPTER 7. TACO FOR WINDOWS BY W-D.KLOTZ AND A.GOTZ

#ifdef _NT

#ifdef WIN32
#define PRINTF(a) MessageBox (NULL,a,NULL,MB_OK |MB_ICONASTERISK) ;
#endif

#else /* not _NT */
#define PRINTF (a) printf (a)

#endif /x _NT %/

To make printf(char *format,?) compatible with Windows, you should use sprintf(buff,
char* format,?) first and PRINTF (buff) afterwards instead. This provides the stan-
dard printf functionality on UNIX, but pops up a MessageBox on Windows instead.

7.6.2 The startup.c file

The developer can assign two function pointers in the server’s startup routine. One
to perform delayed actions during startup and the other for clean server shut down.
Since the server’s main calls the startup routine to initialize TACO’s RPC services
before initializing Windows and creating window handles, you have the possibility to
continue the startup after the creation of window classes and main window handles.
The function pointer (*DelayedStartup)() will be invoked by the DSAPI library
after Windows has finished it’s initialization.

If the application uses other Windows services like OLE, DDE or whatever, it has to
shut them down in a clean manner. For that purpose the developer can assign the
function pointer (*OnShutDown)(), which will be invoked when the main window
receives a WM_CLOSE windows message.

Here the definitions in DevServer.h:

/* Function called from ’libdsapi’ for delayed startup. Useful for
* Windows applications to perform startup operations when Window’s
GUI has been initialized. If function pointer is NULL, no delayed

* startup will take place.
*/
extern long (*DelayedStartup) ();
/*
* Function called from ’libdsapi’ for clean shutdown. Useful for
* Windows applications to perform shutdown operations before the
Window’s
* process is shutdown. If function pointer is NULL, no delayed
* startup will take place.
*/

extern void (*0OnShutDown) ();

*

There is the possibility to pass some lines of text to the application’s startup. This
text will be displayed in the main Windows’s backdrop and can be used to inform
the user of the server’s identity and version.

Here the definition of the corresponding structure in DevServer.h:

/* an array of strings to be displayed on the main window backdrop */
typedef struct {

int lines;

char **text;

} MainWndTextDisplay;

extern MainWndTextDisplay gMWndTxtDisplay;

7.7. LIMITATIONS 37

If you want text to appear in the main window you have to place something similar
like that into the startup routine:

/%
* Here is the place to define what to put into
* the main window’s backdrop.
*/
static char* info[l= {
{"TACO Server that speaks ASCII text"},
{"32 bit Version rev. 1.0 for Windows 95/98/NT, Oct 2001"},
{"ESRF, BP 220, 38043 Grenoble, France"}
};

/%
* Here is the place to assign what to put into
* the main window’s backdrop.
*/

gMWndTxtDisplay.lines= 3;

gMWndTxtDisplay.text= info;

7.6.3 Important Window handles

If you want to extend the server’s GUI, you need to know the following handles
which are declared as globals in NT_debug.h:

extern HWND ghWndMain; // the main window handle
extern char* gszAppName; // the application’s name
extern HINSTANCE ghAppInstance; // the application’s module handle

7.7 Limitations

The libraries do not provide asynchronous calls nor do they provide calls to the
TACO Data Collector nor device servers in C++. The ONC RPC library has been
tested at it’s best, but one never knows.. If you encounter any bug, try to fix
it, and please let me know it! The device server comprises two threads now. A
main thread that handles GUI- and Window- events, and a worker thread, that
runs the sve_run() function, i.e. dispatches all RPC requests. There is no thread
synchronization for the time being. Therefore, if you call RPC-service routines from
the main thread, for example as a result of an interactive user input via the GUI,
you may run into troubles. Closing remarks In Windows jargon, the sample client
application ps_menu is a so called console application. That means that the MFC
Framework supplies its own WinMain function, upon which you have no influence
what so ever. Apparently that does not conflict with the fact, that the DSAPI
library contains also a WinMain entry point, i.e. the server’s main. We hope (we
haven’t tested it yet) that this will stay like that, if you write a standard Windows
client, i.e. when you provide your own WinMain for your client, or when you write
a non console client with the MFC Framework.

The Device Server’s WinMain function has been rewritten, and is much cleaner
now. It takes note of small differences between W/NT and W/95. With the new

38 CHAPTER 7. TACO FOR WINDOWS BY W-D.KLOTZ AND A.GOTZ

ONC RPC library, we have now better control on the interplay of Windows events
and RPC requests. The device server handles all Window events in a main thread,
that updates the GUI, whereas a second worker thread handles the svc_run() loop
for RPC requests.

Both sample device servers have now their own help support.

The next step will be to support C++ device servers on Windows.

In case of problems or requests/proposals for modifications contact klotz@esrf.fr
or gotz@esrf.fr.

Chapter 8

Platforms

TACO is actively supported and used on the following platforms :

Linux/x86 - following distributions have been tested

— SuSE

— Mandrake
— RedHat
— Debian

but there is no reason why TACO shouldn’t compile and run on any Linux
distribution.

Linux/68k - using the Debian distribution on MVME-162’s and MVME-
167’s Motorola’s

Solaris - versions 2.5 and 2.7 are supported using the native Solaris compilers
and GNU gcc compilers

HP-UX - version 9.x and 10.20
OS89 - version V3.03 on VME
Windows - 95/98 and NT using Visual C++ 5.0

The following platforms have been ported to in the past but are not used anymore
and are therefore not uptodate :

VxWorks - version 5.x
LynxOS - version ?

Irix - version 6.5

The latter platforms could be updated if need arises.

39

40

CHAPTER 8. PLATFORMS

Chapter 9

Device Servers in C++
by A.Gotz and E.Taurel

9.1 Introduction

Device Servers are the distributed objects which form the heart of the TACO control
system. They were designed to be written in C based on a technique called Objects
in C (OIC). This technique was inspired by the Widget model in the X11 Intrinsics
Toolkit (Xt). This chapter describes how to implement Device Servers in C++.
This chapter will describe the first C++ implementation of Device Servers taking
as an example the AGPowerSupply class. The advantages and disadvantages of
this new implementation will be discussed plus the possible future directions which
sh/could be explored.

9.2 Device Server Model ++

The Device Server Model (DSM) provides a framework for implementing and dis-
tributing objects called devices in a networked environment. The original DSM
(as described in The Device Server Programmer’s Manual) was comprised of the
following elements :

1. the device,

2. the server,

3. Objects in C,

4. the root class,

5. the device class,

6. the resource database,
7. the commands,

8. local access,

9. network access, and

10. the applications programmer’s interface.

41

42 CHAPTER 9. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

Because the DSM has proved to be successful and in order to stay backwards com-
patible the DSM has been kept as is and only the OIC part has been replaced.
However replacing OIC by C++ has meant a new terminology and technology for
implementing the individual elements of the DSM. In the C++ implementation the
invidual elements of the DSM are implemented as follows :

1.

a device is an instantiation of the base C++ class Device,

a server is an individual process in the classical operating system sense (here
nothing has changed),

the root class is the C++ base class Device,

a device class is a C++ class derived from the public base class Device (e.g.
AGPowerSupply),

the resource database is a database accessed via a database api (here noth-
ing has changed),

commands are C++ protected member functions implemented in the device
class,

local access is implemented via the standard api call dev_putget () or via the
virtual Command method implemented in the base class Device (the equivalent
of the old dev_cmd () function),

network access is provided via the standard api call dev_putget (),

the applications programmer’s interface is the same as before i.e. the
client does not know if the server is implemented in OIC or a C++

In addition to the above basic elements the following additional points can be made
about the C++ implementation of the DSM :

e the class initialise function (called once for every class) although not sup-

ported by the C++ language has been retained in order to allow efficient im-
plementation e.g. for the retrieving of class resources, and is implemented as
a virtual private method in the base class Device,

the object initialise method has been suppressed,

the state machine has (of course) been retained and is implemented as a
virtual public method in the base class,

a get resource method has been added as a standard method in all in order
to retrieve resources from the static database.

C++ does not support class variables in the same manner OIC does i.e. one
copy of a variable per class and derived class common to all instantiations
of that class. Class variables were therefore transformed into static class
members, static variables (with file scope) or in the worst case a copy of the
variable was stored in each object.

9.3. DEVICE ROOT CLASS 43

9.3 Device root class

All device classes must be derived from the Device base class (also known as the
root class). The Device class replaces the old DevServer class. The server part
is implemented in the rpc stubs and in the standard Device Server main(). This
distinction between what is a device and what is a server creates a clean separation
between two functionally different aspects of the DSM.

The following comments can be made about the present implementation :

e Deviceisimplemented as an abstract class (one of its members, GetResources,
is a pure virtual function). This means Device cannot be instantiated and
can only serve as a base class for derived classes.

e the new type DeviceCommandListEntryreplaces the old DevCommandListEntry.

e a command is defined as a pointer member functions of the Device class (or
a class publicly derived from Device) which takes as arguments two void and
one long pointer and returns a long status. The void pointers refer to argin
and argout and have to be casted to the correct type inside the command.

e the standard commands State() and Status() are implemented as virtual
methods in the base class. This means that any derived class which does not
implement these commands automatically inherits the base class implemen-
tation.

¢ 3 dummy StateMachine method is implemented as virtual method which
always returns DEVOK.

e as mentioned above the object initialise as something different from the object
create method has been suppressed from the DSM. This has been done for
simplicity reasons (in the past most Device Server Programmer’s did not know
what the difference between the two were) and also to be more in the spirit of
C++. All initialisation is now done at object create time in the class constructor
method.

e most of the variables required by the old DevServer implementation have been
retained for compatibility reasons e.g. class_name, dev_type, these are also
needed by the api when exporting a device.

e each instantiation object of a class derived from Device has a pointer to the
commands list and the number of commands. This was unavoidable because
C++ does not support the notion of class variables.

9.3.1 Device.h - include file

The Device interface is defined in the public include file Device.h and is listed
below.

%\include{/segfs/dserver/dev/classes++/device/include/Device.h}
//static char RcsId[] = "$Header: /segfs/taco/doc/manual/cppdserver.tex,v 1.1 2000/07/24 09:

//+**

//
// File: Device.h

//

// Project: Device Servers in C++

//

44

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

CHAPTER 9. DEVICE SERVERS IN c++ BY A.GOTZ AND E.TAUREL

Description: public include file containing definitions and declarations
for implementing the device server Device base class in C++
(DeviceClass) .

Author(s): Andy Goetz

Original: February 1995

$Revision: 1.1 $

$Date: 2000/07/24 09:42:46 $

$Author: goetz $

$Log: cppdserver.tex,v $

Revision 1.1 2000/07/24 09:42:46 goetz
Initial revision

//+**

#ifndef _DEVICE_H
#define _DEVICE_H

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Some remarks about the Device class definition

1 - Members class_name and dev_type should not be defined as static members

otherwise, there will be only one copy of them for the device server
process and it is not possible to correctly handle device server
with several embedded classes

Therefore, don’t forget to initialize them in the object constructor
and not in the class_initialise function which is executed only once
for a class.

2 - The State and Status member function are declared as public. This is due

to the 0S-9 C++ compiler. To reuse them in a device derived class

(by specifying a pointer to them in the command list), the 0S-9 compiler

needs the function to be declared as public !!

class Device {

//
//
//

private members

private :

//
//
//

private virtual functions which should be defined in each new sub-class

9.3. DEVICE ROOT CLASS 45

static short class_inited;

virtual long ClassInitialise(long *error);
virtual long GetResources (char *res_name, long *error) = 0; // pure virtual

//
// public members

//

public:

typedef long (Device::* DeviceMemberFunction) (void*, void*, long*);
typedef struct _DeviceCommandListEntry {

DevCommand cmd ;
DeviceMemberFunction fn;
DevArgType argin_type;
DevArgType argout_type;
long min_access;
}

DeviceCommandListEntry;
typedef struct _DeviceCommandListEntry *DeviceCommandList;

virtual long State(void *vargin, void *vargout , long *error);
virtual long Status(void *vargin, void *vargout, long *error);

//

// class variables

//

char*x class_name;
char dev_type[24];

char* name;

Device (DevString name, long *error);

“Device ();

virtual long Command (long cmd,
void *argin, long argin_type,
void *argout, long argout_type,
long *error);

long Get_min_access_right(long,long *,long *);

void Get_command_number (unsigned int *);

long Command_Query(_dev_cmd_info *,long *);

//
// protected members - accessible only be derived classes

//

protected:

46

//
//
//

};

CHAPTER 9. DEVICE SERVERS IN c++ BY A.GOTZ AND E.TAUREL

the following virtual commands must exist in all new sub-classes

virtual long StateMachine(long cmd, long *error) ;

long state; // device state

long n_state; // convenience variable for storing next device state
long n_commands;

DeviceCommandList commands_list;

#define TYPE_DEFAULT "DevType_Default"
#define TYPE_INIT "DevType_"

#endif /* _DEVICE_H x*/

9.3.2 Device.cpp - source code file

The following points can be made about the Device class source code implementa-
tion :

o the Device constructor Device: :Device (listed below) defines a command
list containing two commands - DevState and DevStatus. This command list
will normally be overridden by the derived device class but in the case that
the device class defines no command list the derived class will have at least
the two standard commands.

e the ClassInitialise method is called from the constructor via the static
variable class_inited.

//4
//
// Function: Device: :Device()

//

// Description: constructor to create an object of the base class Device
//

// Input: char *name - name (ascii identifier) of device to create

//

// Output: long *error - error code returned in the case of problems

//
//-

Device: :Device (char *devname, long *error)
{
static DeviceCommandListEntry dev_cmd_list[] = {
{DevState, &Device::State, D_VOID_TYPE, D_SHORT_TYPE},
{DevStatus, &Device::Status, D_VOID_TYPE, D_STRING_TYPE},
I
static long no_commands = sizeof (dev_cmd_list)/
sizeof (DeviceCommandListEntry) ;

dev_printdebug (DBG_TRACE,"Device: :Device() called, devname = %s\n",devname) ;

9.3. DEVICE ROOT CLASS 47

*error = DS_OK;

//
// check if ClassInitialise() has been called
//
if (Device::class_inited !'= 1)
{
if (Device::ClassInitialise(error) != DS_OK)
{
return;
}
}
//

// initialise class_name (this should be done here because class_name
// is NOT a static member of the device class for the case of device
// server with several embedded classes. Also initialises, device

// type

//

this->class_name = "DeviceClass";
sprintf (this->dev_type, TYPE_DEFAULT) ;

//

// initialise the device name

//

this->name = (char*)malloc(strlen(devname)+1);
sprintf (this->name,"%s",devname) ;

//

// initialise the commands list

//

this->n_commands = no_commands;
this->commands_list = dev_cmd_list;

this->state = DEVON;

e one of the most important member methods of the Device class is the Command
method which searches for the required command in the device class’ com-
mand list, calls the state machine and then calls the command. One not so
clean feature of this implementation is that the type checking is done by the
method and not by the C++ compiler but this has so far proved unavoidable.
Command is defined to virtual so that it can be overloaded by any of the sub-
classes. This is necessary for the 0ICDevice class which needs to call the (old)
OIC DevMethodCommandHandler. Normally no other classes need to overload
the Command method.

long Device::Command (long cmd, void* argin, long argin_type,

48 CHAPTER 9. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

void* argout, long argout_type, long *error)

int i;
DeviceMemberFunction member_fn;

printf ("Device: :Command() called, cmd = %d\n",cmd);
// add code to execute a command here

for (i = 0; i < this->n_commands; i++)

{
if (cmd == this->commands_list[i].cmd)
{
if (argin_type != this->commands_list[i].argin_type |
argout_type != this->commands_list[i].a
{
*error = DevErr_IncompatibleCmdArgumentTypes;
return(DS_NOTOK) ;
}

// check state machine
if (this->StateMachine(cmd,error) != DS_OK)

{
return(DS_NOTOK) ;

}

// now execute the command

member_fn = this->commands_list[i].fn;

if ((this->*member_fn) (argin,argout,error) != DS_0K)
{
return(DS_NOTOK) ;
}
else
{
return(DS_0K) ;
}

*error = DevErr_CommandNotImplemented;
return(DS_NOTOK) ;
};
9.4 PowerSupply class - an example superclass
At the ESRF the functionalities of a standard powersupply class have been defined

(cf. DSN/078) and are implemented in the superclass PowerSupplyClass in OIC.
This section describes an equivalent C++ implementation which respects the ESRF

9.4. POWERSUPPLY CLASS - AN EXAMPLE SUPERCLASS 49

standard.
The following points can be made about this implementation :

e PowerSupply is defined as an abstract class (it has one pure virtual func-
tion (StateMachine)). This means it can only be used as a base class for
other derived classes and cannot be instantiated,

e the exact same types for class member variables were used for the C++ imple-
mentation as for the previous OIC implementation, the only difference being
that they were defined as protected which means that they are only visible
to classes derived from the PowerSupply class,

e CheckReadValue is implemented as a protected method to be used only by
classes derived from the PowerSupply class.

9.4.1 PowerSupply.h - include file

class PowerSupply : public Device {
// private members
private :

long ClassInitialise(long *error);
long GetResources (char *res_name, long *xerror) ;

// protected members
protected:

float set_val;
float read_val;
long channel;

long n_ave;

long fault_val;
float cal_val;
float conv_val;
char *conv_unit;
float set_offset;
float read_offset;
float set_u_limit;
float set_1_limit;
float idot_limit;
long polarity;
float delta_i;
long time_const;
long last_set_t;

long CheckReadValue(DevBoolean *check, long *error);
virtual long StateMachine(long cmd, long *error)=0; // pure virtual function
// public members

public:

50 CHAPTER 9. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

PowerSupply (char *name, long *error);
“PowerSupply O;

};

9.4.2 PowerSupply.cpp - source code file

The implementation of PowerSupply class is very simple and does not do much. One
interesting point however is the GetResources method which retrieves the delta_i
and time_constant resources. Because this is called directly from the constructor
during initialisation it is transparent to the sub-classes. This was not possible in
the OIC and demonstrates the advantage of using C++. Here is the listing of the
GetResources method :

long PowerSupply::GetResources (char *res_name, long *error)
{
static db_resource res_powersupply[] = { {"delta_i", D_FLOAT_TYPE},
{"time_constant", D_LONG_TYPE}, };
static unsigned int res_powersupply_size = sizeof (res_powersupply)/
sizeof (db_resource);
register int ires;

*xerror = DS_OK;

//

// setup the db_resource structure so that we can interrogate the database
// for the two resources "delta_i" and "time_constant" which are needed

// by all powersupplies to implement the read<>set check

//

ires = 0;
res_powersupply[ires] .resource_adr

&(this->delta_i); ires++;
&(this->time_const); ires++;

res_powersupply[ires] .resource_adr

if (db_getresource(res_name, res_powersupply, res_powersupply_size, error)

!= DS_OK)
{
printf ("PowerSupply: :GetResources() db_getresource failed, error %d\n",
xerror) ;
return(DS_NOTOK) ;
}

return(DS_0K) ;

9.5 AGPowerSupply class - an example derived class

AGPowerSupply is an example of a device class derived from the PowerSupply class,
it simulates a real powersupply and is one of the simulators used by the application
programmers to simulate the machine.

The class definition can be found in the public include file (AGPowerSupply.h). The
following comments can be made on present implementation :

9.5. AGPOWERSUPPLY CLASS - AN EXAMPLE DERIVED CLASS 51

e the State command is inherited from base class Device,

e the Status command implemented in the AGPowerSupply derived class over-
rides the base class implementation.

9.5.1 AGPowerSupply.h - include file
class AGPowerSupply : public PowerSupply {

// private members
private :

long ClassInitialise (long *error);
long GetResources (char *res_name, long *error);

// protected members
protected:
// commands

long 0ff (void *argin, void *argout, long *error);

long On (void *argin, void *argout, long *error);

long Status (void *argin, void *argout, long *error);
long SetValue (void *argin, void *argout, long *error);
long ReadValue (void *argin, void *argout, long *error);
long Reset (void *argin, void *argout, long *error);
long Error (void *argin, void *argout, long *error);
long Local (void *argin, void *argout, long *error);
long Remote (void *argin, void *argout, long *error);
long Update (void *argin, void *argout, long *error);

long StateMachine (long cmd, long *error);
// public members
public:

AGPowerSupply (char *name, long *error);
~“AGPowerSupply ();

};

9.5.2 AGPowerSupply.cpp - source code

Below are some examples taken from the AGPowerSupply.cpp source code which
illustrates some of the details of the C++ implementation.

e the notion of template has been kept in the present C++ implementation. This
is done in a somewhat unorthodox manner because of the fact that C++ does
not implement this feature. A global pointer to a copy of an AGPowerSupply
is defined in static address space. The pointer is initialised to point to a block
of memory of size sizeof (AGPowerSupply) allocated in ClassInitialise.
The individual fields of the template are then initialised to the class defaults

52 CHAPTER 9. DEVICE SERVERS IN c++ BY A.GOTZ AND E.TAUREL

in ClassInitialise. The reason for this unorthodox approach is because it
is not possible to address an object which does not exist (if you understand
what I mean !)!

long AGPowerSupply::ClassInitialise (long *error)
{
static AGPowerSupply *agps_template = (AGPowerSupply*)malloc(sizeof (AGPowerSu

PP1y));

int iret=0;

printf ("AGPowerSupply::ClassInitialise() called\n");
// AGPowerSupplyClass is a subclass of PowerSupplyClass

class_name = (char*)malloc(strlen("AGPowerSupplyClass")+1);
sprintf (class_name,"AGPowerSupplyClass");

class_inited = 1;

// initialise the template powersupply so that DevMethodCreate has
// default values for creating a powersupply, these values will be
// overridden by the static database (if defined there).

// default is to start with powersupply switched OFF; the state

// variable gets (ab)used during initialisation to interpret the
// initial state of the powersupply: 0==DEVOFF, 1==DEVON. this is
// because the database doesn’t support the normal state variables
// like DEVON, DEVSTANDBY, DEVINSERTED, etc.

agps_template->state = 0;
agps_template->n_state = agps_template->state;
agps_template->set_val = 0.0;
agps_template->read_val = 0.0;
agps_template->channel = 1;

agps_template->n_ave = 1;

agps_template->conv_unit = (char*)malloc(sizeof ("AMP")+1);
sprintf (agps_template->conv_unit, "AMP");
agps_template->set_offset = 0.0;
agps_template->read_offset = 0.0;
agps_template->set_u_limit = AG_MAX_CUR;
agps_template->set_1_limit = AG_MIN_CUR;
agps_template->polarity = 1.0;

// interrogate the static database for default values

if (GetResources ("CLASS/AGPS/DEFAULT" ,error))
{
printf ("AGPowerSupply: :ClassInitialise(): GetResources() failed, error %d\
n",error);
return(DS_NOTOK) ;

lif agps_template was defined as a new AGPowerSupply the first time the constructor is called
it will try to access agps_template->something but agps_template does not exist yet and will
generate a bus error

9.5. AGPOWERSUPPLY CLASS - AN EXAMPLE DERIVED CLASS 53

agps_template->state = state;
agps_template->set_val = set_val;
agps_template->read_val = read_val;
agps_template->channel = channel;
agps_template->n_ave = n_ave;
agps_template->conv_unit = (char*)malloc(sizeof (conv_unit)+1);
sprintf (agps_template->conv_unit,conv_unit);
agps_template->set_offset = set_offset;
agps_template->read_offset = read_offset;
agps_template->set_u_limit = set_u_limit;
agps_template->set_1_limit = set_1l_limit;
agps_template->polarity = polarity;

printf("returning from AGPowerSupply::ClassInitialise()\n");

return(iret) ;

}

e the command list references the two commands DevState and DevStatus
in the base class Device. Because they are defined in the base class as
virtual C++ uses dynamic binding to resolve them and therefore at run-
time Device::DevState and AGPowerSupply: :DevStatus are executed re-
spectively.

static Device::DeviceCommandListEntry commands_list[] = {
{DevState, (DeviceMemberFunction)&Device::State, D_VOID_TYPE, D_SHORT_TYPE},
{DevStatus, (DeviceMemberFunction)&Device::Status, D_VOID_TYPE, D_STRING_TYPE},

e simple commands (e.g. which don’t take input or output parameters) have
not changed much in their implementation e.g. AGPowerSupply: :0ff looks
as follows :

long AGPowerSupply::0ff (void *vargin, void *vargout,long *error)

{
printf ("AGPowerSupply::0£ff (¥s) called\n",name);

*error = DS_OK;
read_val = 0.0;
set_val = 0.0;

state = DEVOFF;

return (DS_OK);

e commands which take input or output parameters have to cast their pa-
rameters from void to pointers to the correct type. Here is an example of
AGPowerSupply: :Update which calls two other commands to return the state,
set and read value :

long AGPowerSupply::Update (void *vargin, void *vargout, long *error)

54 CHAPTER 9. DEVICE SERVERS IN C++

DevStateFloatReadPoint *vargout_sfrp;
DevShort darg_short;
DevFloatReadPoint darg frp;

printf ("AGPowerSupply::Update(%s) called\n",name);

vargout_sfrp = (DevStateFloatReadPoint*)vargout;

// update state

State(NULL, &darg_short, error);
vargout_sfrp->state = darg_short;

// get latest set and read

9.6 startup.cpp - an example startup file

ReadValue(NULL, &darg_frp, error);
vargout_sfrp->set = darg_frp.set;
vargout_sfrp->read = darg_frp.read;

return(DS_0K) ;

BY A.GOTZ AND E.TAUREL

Any device which has to be served by a Device Server has to be created and ex-
ported as usual in a startup procedure. Listed below is an example startup() for
the AGPowerSUpply class which reads a list of devices form the static database,
instantiates them, executes a command on them (to see if they are alive) and then
exports them.

#include
#include
#include
#include
#include

<API.h>
<Device.h>
<DevServer.h>
<PowerSupply.h>
<AGPowerSupply.h>

#define MAX_DEVICES 1000

extern "C" long startup(char *svr_name, long *error);

unsigned

int n_devices, i;

Device *device[MAX_DEVICES];

long startup(char *svr_name, long *error)

{

char **dev_list;

short

state;

long status;

printf ("startup++() program to test dserver++ (server name

= %s)\n",svr_name);

9.7. OICDEVICE WRAPPER CLASS 95

// get the list of device name to be served from the static database

if (db_getdevlist(svr_name,&dev_list,&n_devices,error))

{
printf ("startup(): db_getdevlist() failed, error %d\n",*error);
return(-1);

}

printf("following devices found in static database: \n\n");

for (i=0;i<n_devices;i++)

{
printf ("\t%s\n",dev_list[i]);

}

// now loop round creating and exporting the devices

for (i=0; i<n_devices; i++)

{
device[i] = new AGPowerSupply(dev_list[i],error);
if ((device[i] == 0) || (*xerror '= 0))
{

printf ("Error when trying to create s device\n",dev_list[i]);
return(DS_NOTOK) ;
}

else

{

// test calling Device::State via Device::Command method

device[i]->Command (DevState, NULL, D_VOID_TYPE, (void*)&state, D_SHORT_TYPE, error)
// export the device onto the network

status = dev_export((char*)device[i]->name, (Devicex)device[i], (long*)error);

printf ("startup++() dev_export() returned %d (error = %d)\n",status,*error);
}
}

return(DS_0K) ;

9.7 0ICDevice wrapper class

Writing device servers in C++ is no problem for new classes which do not depend on
any existing classes. However one of the main aims of object oriented programming
is code reuse. Seeing as the majority of classes at the ESRF were written before
C++ was available on OS9 they were written in C using the Objects In C (OIC)
methodology. It is vital therefore that C++ classes can (re)use OIC classes.

Two possibilities of including OIC classes in C++ considered were :

1. calling the OIC C functions ds_create(), ds_method finder() directly
from C++,

56 CHAPTER 9. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

2. writing a C++ wrapper class for OIC which ”wraps” the OIC DevServer
objects as a C++ Device objects.

The first method (C++ calls OIC C directly) poses the problem of what happens
when the programmer wants to export a mixture of C++ and C objects onto the
network ? The device server main() routine assumes can manage a list of either all
OIC DevServer’s or all C++ Device’s but not both. It was decided therefore to use
the second method (C++ wrapper class) and write a class called 0ICDevice.
0ICDevice is a C++ wrapper class for OIC classes. OICDevice is a generic class
for creating objects of any OIC class, it is derived from the Device root class. The
result is a C++ 0ICDevice object which has a pointer to the actual OIC object.
Seen from the C++ programmer’s point of view it appears as a C++ object. It
has the same interface as all other C++ objects dervied from Device. Executing
commands on the object will result in the OIC command method handler being
called.

Some points to be aware of when wrapping your OIC objects with OICDevice :

e 0ICDevice implements basic versions of DevState and DevStatus which ac-
cess the OIC device state,

e the actual state of the OICDevice object is stored in the OIC object, to access
it use (short)this->ds->devserver.state (and NOT the state variable in
the Device part of the object),

e to access the OIC object use the pointer stored in the OICDevice object part
i.e. this->ds (use this for example to access any fields of the OIC object e.g.
((PowerSupply)this->ds)->powersupply.set_val),

e to access the OIC object’s class use the pointer stored in the OICDevice object
part i.e. this->ds class,

Note the 0ICDevice class is only a wrapper class for encapsulating OIC objects and
not classes. Because of the differences between the OIC and C++ implementations
it is not possible to derive new C++ classes from existing OIC classes as sub-classes.
It is however possible to instantiate OIC classes in C++. If you want to use an
existing OIC class as a super-class for C++ then you have to rewrite the OIC class
in C++.

9.7.1 0ICDevice.h - include file

Here is the source code of the 0ICDevice.h header file which defines the interface
to the OICDevice class :

//static char RcsId[] = "$Header: /segfs/taco/doc/manual/cppdserver.tex,v 1.1 2000/07/24 (
/) /KR ok ok s o ok ok sk o ok o ok ok ok o sk o ok ok o ok o sk ko o sk K ok o ko ok ok ok sk ok sk o ko ok sk ok sk o ok o ko ok o sk o ok ok o ok o sk ok o

//

// File: 0ICDevice.h

//

// Project: Device Servers in C++
//

// Description: public include file containing definitions and declarations
// for implementing 0ICDevice class in C++. The 0ICDevice class

// wraps (old) 0IC classes in C++ so that they can be used

// in C++ classes derived from the Device base class.

//

// Author(s): Andy Goetz

9.7. OICDEVICE WRAPPER CLASS 57

//

// Original: November 1996

//

// $Revision: 1.1 §

//

// $Date: 2000/07/24 09:42:46 $

//

// $Author: goetz $

//

// $Log: cppdserver.tex,v $

// Revision 1.1 2000/07/24 09:42:46 goetz
// Initial revision

//

//

//

[/A% ok ok ok ok ok ok ok o o o o o ok ok ok sk sk sk sk sk ok sk o oo o o o o o ok ok ok ok sk sk sk sk sk ke ok sk o o o o o o o ok ok ok ok ok sk sk sk ok sk ok ok o o o o o
#ifndef _OICDEVICE_H

#define _0ICDEVICE_H

class 0ICDevice : public Device {
//
// private members
//
private :
//
// private virtual functions which should be defined in each new sub-class
//
static short class_inited;
long ClassInitialise(long *error);
//
// not many 0IC classes have this method
//
long GetResources (char *res_name, long *error);
//
// public members
//
public:
long State(void *vargin, void *vargout , long *error);
long Status(void *vargin, void *vargout, long *error);
//
// class variables
//
0ICDevice (DevString devname, DevServerClass devclass, long *error);
~“0ICDevice ();
long Command (long cmd,
void *argin, long argin_type,
void *argout, long argout_type,
long *error);
inline short get_state(void) {return(this->ds->devserver.state);}
inline DevServer get_ds(void) {return(this->ds);}
inline DevServerClass get_ds_class(void) {return(this->ds_class);}
//

// protected members - accessible only from derived classes

//

58 CHAPTER 9. DEVICE SERVERS IN c++ BY A.GOTZ AND E.TAUREL

protected:
long StateMachine(long cmd, long *error) ;
//
// 0ICDevice member fields
//
DevServer ds; // pointer to the old 0IC object
DevServerClass ds_class; // pointer to the old O0IC class
s
#endif /* _OICDEVICE_H */

9.7.2 startup.cpp - an example

Here is an example of a simple C++ startup function which creates a OIC AGPow-
erSupply object in C++ using the OICDevice wrapper class (note the syntax for
the full C++ case commented out) :

static char RcsId[] = "$Header: /segfs/taco/doc/manual/cppdserver.tex,v 1.1 2000/07/24 09:
[/KR ok ko o ok ok sk o ok o ok ok o sk o ko o o ko ko ok ok o ko ok o ok sk kK o ko k ok ok sk o ok o ko ok o sk o ko ok ok ok o
//

// File: startup.cpp

//

// Project: Device Servers in C++

//

// Description: startup source code file for testing the 0IC AGPowerSupply class
// in C++. AGPowerSupply class implements a simulated powersupply

// derived from the base classes PowerSupply and Device (root

// class).

//

//

// Author(s): Andy Goetz

//

// Original: November 1997

//

// $Revision: 1.1 $

//

// $Date: 2000/07/24 09:42:46 $

//

// $Author: goetz $

//

// $Log: cppdserver.tex,v $

// Revision 1.1 2000/07/24 09:42:46 goetz

// Initial revision

//

//

/33K sk sk sk e ok sk sk e ok sk sk ok sk sk k3 ok sk sk sk ok sk 3 ok sk sk e ok ok sk s sk ok sk s o sk sk e sk ok ok s ok sk ok 3 ok ok ok o ok sk k o ok ok ok k ok ok
#include <iostream.h>

#include <API.h>
#include <Device.H>
#include <DevServer.h>
#include <DevServerP.h>
#include <0ICDevice.H>
#include <PowerSupply.h>

9.7. OICDEVICE WRAPPER CLASS 59

#include <PowerSupplyP.h>
#include <AGPowerSupply.h>
#include <AGPowerSupplyP.h>

#define MAX_DEVICES 1000

long startup(char *svr_name, long *error)

{

//
//
//

//
//
//

//
//
//
//
//
//
//
//

//
//
//

//
//
//

char *xdev_list;

unsigned int n_devices, ij;
0ICDevice *device[MAX_DEVICES];
short state;

long status;

printf ("startup++() program to test dserver++ (server name = Js)\n",svr_name);
get the list of device name to be served from the static database
if (db_getdevlist(svr_name,&dev_list,&n_devices,error))
{
printf ("startup(): db_getdevlist() failed, error %d\n", *error);
return(-1);
}
printf("following devices found in static database: \n\n");
for (i=0;i<n_devices;i++)
{
printf ("\t%s\n",dev_list[i]);
}

now loop round creating and exporting the devices

for (i=0; i<n_devices; i++)

{
DO NOT create AGPowerSupply (C++) objects

device[i] = new AGPowerSupply(dev_list[i],error);

create old (0IC) AGPowerSupply objects

device[i] = new 0ICDevice(dev_list[i], (DevServerClass)aGPowerSupplyClass,error);
test calling Device::State via Device::Command method

device[i]->Command (DevState, NULL, D_VOID_TYPE, (voidx)&state, D_SHORT_TYPE, error);
export the device onto the network

status = dev_export((char*)device[i]->name, (Devicex*)devicel[i], (long*)error);

printf ("startup++() dev_export() returned %d (error = %d)\n",status,*error);

}

60 CHAPTER 9. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

return(DS_0K) ;

9.8 Implementation

In designing the present implementation the following requirements were considered

1. to conserve as much as possible the investment made in the device server api
and the existing classes,

2. to be compatible with any further developments made in the api,
3. clients should not have to be modified.

Based on these requirements it was decided to implement only the device classes in
C++ and keep the api in C thereby satisfying all three requirements. It means that
there is only one api implementation and it can be continued to be developed and
the improvements/bug fixes will be visible to device servers written in C and C++
and to clients.

To implement device servers in C++ the following modifications were made:

1. the svc_api.c file (which implements the rpc stubs for the api functions)
was modified so that (1) when compiled with the C compiler it uses the
OIC DevMethodCommandHandler and (2) when compiled with C++ it calls the
Device: :Command method. Here is an example taken from the dev_putget ()
function :

#ifndef cplusplus

/*
* 0IC version
*/
client_data.status = (ds__method_finder (ds, DevMethodCommandHandler))
(dS,
server_data->cmd,
server_data->argin,
server_data->argin_type,
client_data.argout,
client_data.argout_type,
&client_data.error);
#else
/*
* C++ version
*/
client_data.status = device->Command(server_data->cmd,
(void*)server_data->argin,
server_data->argin_type,
(void*)client_data.argout,
client_data.argout_type,
&client_data.error) ;
#endif /* __cplusplus */

2. svc_api.c was also modified so that it can deal with Devices and not DevServers
anymore. In OIC a list of DevServer has to be managed, while in C++ a list
of Device has to be managed i.e.

9.9. COMPILERS 61

#ifndef cplusplus

DevServer ds;

ds = (DevServer) ptr_ds;
#else

Device *device;

device = (Devicex) ptr_ds;
#endif /x __cplusplus */

3. All include files had to be modified to declare external functions as C functions
for the C++ compiler e.g.

extern "C" long dev_export PT_((char* dev_name, Device *ptr_dev, long *error))

9.9 Compilers

The first C++ implementation was done in 1995 (by AG) using the HP CC compiler
on the HP 9000/700 series. This compiler is a 2.x C++ compiler and supports
symbolic debugging. When compiling the following symbols have to be defined
_STDC__, unix, and _HPUX_SOURCE.

In 1996 this work was repeated (by ET) for the Kicker Powersupply at the ESRF
using the Ultra-C++ compiler from Microware and the GNU g++ compiler on
HP-UX.

For the future we propose that wherever possible the GNU g++ compiler must be
used. Where it is not possible the best adapted native compiler should be used.
This is clearly the case for OS9 where the native Ultra-C++ compiler from Mi-
croware is the obvious choice. This is not so clear for HP-UX - the GNU g++ com-
piler does not support exceptions but is otherwise a good choice. For the present
g++ is supported under HPUX (i.e. the C++ libraries are compiled only with the
g++ compiler?).

9.10 Template Class

In the absence of xclassgen supporting C++ we have written templates for a
Template class. The templates were derived from the KickerSupply class but
have never been compiled (i.e. we do not guarantee there are no bugs !). To use
the templates simply copy them and modify them with a global editor replacing all
occurrences of Template and template with MyNewClassName and mynewclassname
(the name of your new class).

The templates can be found in libra:/users/d/dserver/classes++/template :

1. include/Template.H - template include file
2. src/Template.cpp - template source file
3. src/startup.cpp - template startup file

4. src/Makefile - template Makefile for HPUX and Ultra C++

2note that because the GNU compiler uses a different algorithm for “name mangling” it is not
possible to mix GNU object files with those compiled with a different compiler

62 CHAPTER 9. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

9.11 C++ Programming Style

The following style conventions have been adopted :

e the suffixes .H and .cpp were used for C++ include files and source files re-
spectively.

e the C++ commenting style which uses // at the beginning of each line has been
used in order to distinguish it from the pure C style of /* bla bla */.

e extensive use of the this pointer has been made to make the code as explicit
and readable as possible.

e 1o use has been made of ref types.

9.12 Advantages of C++

The following are some of the advantages of using C++ for writing device servers as
opposed to OIC :

1. C++ is a real language with compiler support and symbolic debuggers,

2. C++ is well documented and has a large selection of literature (see the section
on Suggested Reading),

3. because of the compiler support for C++ it is easier to program new classes, the
programmer does not have to learn the many big and small letter conventions
of OIC,

4. a new class can have more than one base class (polymorphism),

5. C++ is more compatible with new products for which only C++ bindings exist
e.g. Corba, DOOCS and cdev.

9.13 Disadvantages of C++

There are not many disadvantages of using C++ but here are some of them :
1. C++ with all its many concepts and possibilities has a steep learning curve,

2. extensive use of operator overloading, function overloading and virtual
functions can very quickly make C++ totally unreadable,

3. C++ executables are big (~ 500 kilobytes on HP-UX) compared to OIC exe-
cutables (~ 150 kilobytes on HP-UX).

9.14 Future developments

Some of the future directions to be considered are :

1. ports to other platforms e.g. Solaris, Linux, LynxOS, vxWorks, will be un-
dertaken,

2. the class generator tool will be extended so that it can generate C++,

3. more use of inline functions should be made,

9.15. CONCLUSION 63
4. define and implement C++ bindings for the database API and the device server
APT (DOOCS or cdev?).

5. if templates and exception handling become standard on all compilers
then investigate how they can be best used,

9.15 Conclusion

OIC has served a useful purpose but the time has come to move to a real object
oriented language and C++ seems to be the obvious choice. The present imple-
mentation shows that it is possible to implement Device Servers in C++ and still be
backwards and forwards compatible with the device server api and the existing OIC
classes.

9.16 Suggested Reading

A lot of literature exists on C++ (books, journals, conferences proceedings etc.) here
is a short list of titles which can be recommended :

1. C++ Primer by Stanley B. Lippman,
2. The C++ Programming Language by Bjarne Stroustrup,

3. The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Strous-
trup (ANSI Base Document),

4. Effective C++: 50 Specific Ways to Improve Your Programs and Designs by
Scott Meyers,

5. More Effective C++: 35 New Ways to Improve Your Programs and Designs
by Scott Meyers,

64 CHAPTER 9. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

Chapter 10

Device Server in C

by A.Gotz

THIS CHAPTER IS THE ORIGINAL DEVICE SERVER MANUAL FOR WRIT-
ING DEVICE SERVERS IN C. IT FIRST APPEARED IN 1995 AND IS THERE-
FORE SOMEWHAT DATED. HOWEVER MOST OF IT IS STILL APPLICA-
BLE FOR DEVICE SERVERS WRITING IN C USING THE OIC METHOD-
OLOGY. SOME OF THE MATERIAL ABOUT ASYNCHRONISM IS OUT OF
DATE NOW. IT IS INCLUDED FOR REFERENCE PURPOSES.

10.1 Introduction

Device servers were first developed at the European Synchrotron Radiation Facility
(ESRF) for controlling the 6 GeV synchrotron radiation source. This document is a
Programmer’s Manual on how to write device servers. It will not go into the details
of the ESRF, nor its Control System nor any of the specific device servers in the
Control System. Various papers describe these topics already. Readers are referred
to Laclare (1988) for a description of the ESRF, to Gdtz et al (1991) for the Control
System and the Device Server User Guides (or DSUGS) for specific device servers.
The role of this document is to help programmers faced with the task of writing
device servers.

Device servers have been developed at the ESRF in order to solve the main task of
the Control System viz. provide read and write access to all devices in a distributed
system. The problem of distributed device access is only part of the problem how-
ever. The other part of the problem is providing a programming framework for a
large number of devices programmed by a large number of programmers each having
different levels of experience and style.

Device servers have been written at the ESRF for a large variety of different devices.
Devices vary from serial line devices to devices interfaced by field-bus to memory
mapped VME cards to entire VME/VXI data acquisition systems. The definition of
a device depends very much on the user’s requirements. In the simple case a device
server can be used to hide the serial line protocol required to communicate with
a device. For more complicated devices the device server can be used to hide the
entire complexity of the device timing, configuration and acquisition cycle behind
a set of high level commands.

A model (referred to as the Device Server Model or DSM) has been developed to
satisfy the main two requirements. In order to do this the DSM has a number
of parts to it. It defines the concept of a generic device which is created and
managed in a server — a device server. The device is accessed by an application

65

66 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

programmers interface (api) which is network transparent. Device specific details
get treated in the device servers thereby freeing applications to do application-
oriented work. Multiple access is implemented by queuing requests — the queuing
is handled automatically by the network software.

In this manual the process of how to write device servers will be treated. The manual
has been organised as follows — chapter 2 presents an historical account of device
servers. The device server model (DSM) is treated in chapter 3. This is followed
by a chapter on Objects in C (the Object Oriented Programming methodology
used to implement the device servers). Chapter 5 describes how to write a device
server. Chapter 6 is devoted to techniques in using classes. Chapter 7 is reserved
for Frequently Asked Questions. Finally there is a discussion of limitations in the
present, device server model and what improvements are planned.

Throughout this manual examples of source code will be given in order to illustrate
what is meant. The examples have been taken from the AGPowerSupplyClass -
a simulation of a powersupply which illustrates how a typical device server for a
powersupply at the ESRF functions. The simulation runs under OS9 and Unix
operating systems and requires no hardware in order to run.

10.2 History

The concept of using servers to access devices was first proposed by W.D.Klotz in
1989. To demonstrate this a simulation of a powersupply was implemented which
ran as a server. Clients wanting to use the powersupply connected to the server
which then forked a copy of the server for the client. Unique data was stored in
shared memory. This first version was based on Berkeley sockets and suffered from
the drawback that no machine independent data format was used and that for large
numbers of clients the number of forked process soon became a limiting factor.
The original version was released to application programmers and served a useful
purpose.

A.Go6tz (the author) took over the original server in the late Spring of 1990. The first
goals were to replace the Berkeley sockets with the CERN NC/RPC interface, to
write servers for real devices, and to setup a team of programmers who would write
the servers. This was just the time that X11 and MIT Widgets started appearing
on commercial platforms. The Widget model (implemented by MIT’s Intrinsics
Toolkit) struck the author as being very appealing. It is easy to use, very powerful
and manages to hide the complexity of the implementation from the user. It also
demonstrated how Classes and Objects can be implemented in C.

Armed thus with the original powersupply api and the Widget model from MIT work
begun (mid-1990) in earnest on the device server concept. Assistance was provided
by R.Wilcke (who ported the CERN NC/RPC software to 0OS9) and H.Witsch
(who acted as the first guinea-pig device server programmer). The first device
server implemented the same functionality as the WDKPowerSupply. The server
ran on OS9 and the client on HPUX.

Today (almost three years later) more than 500 device servers exist for the ESRF’s
Machine and Beamline Control Systems and for Data Acquisition Systems. They
run on a range of Operating Systemsi.e. OS9, HPUX and SunOS. There are approx-
imately 16 programmers involved in writing device servers. The CERN NC/RPC
has been replaced by the SUN NFS/RPC thanks to J.Meyer. A resource database
has been added which is accessible via a standard set of rpc calls developed by
E.Taurel. Device servers are implemented using classes and clients access devices
via a standardised api. If the powersupply server process is considered as the first
prototype and the NC/RPC based device servers as the first generation, then it
would be true to say that device servers are now well into their second generation.

10.3. THE DEVICE SERVER MODEL 67

The term “device server” first appeared in an internal ESRF document by W.D.Klotz
and S.M.Keogh in June 1989. It reappeared in a paper written for a GULAP (Group
for Upper Level Applications Programming) Meeting in January 1990 and has been
a common word in the ESRF daily vocabulary ever since.

10.3 The Device Server Model

This section will present the device server model (see figure ??), hereafter referred
to as DSM. It will describe each of the basic features of the DSM and their function.
The DSM can be divided into the following basic elements — the device, the server,
Objects In C, the root class, the resource database, the commands, local access,
network access, and the application programmers interface. This chapter will treat
each of the above elements (except for OIC which is treated in the next chapter)
separately. More details on the DSM can be found in Gétz et. al. (from which most
of the information for this chapter have been taken).

10.3.1 The model

The basic idea of the DSM is to treat each device as an object which is created
and stored in a process called a server. Each device is a separate entity which has
its own data and behaviour. Each device has a unique name which identifies it in
network name space. Devices are configured via resources which are stored in a
database. Devices are organised according to classes, each device belonging to a
class. Classes are implemented in C using a technique called Objects In C. All
classes are derived from one root class. The class contains a generic description of
the device i.e. what actions can be performed on the device and how to implement
them. The actions are available via commands. Commands can be executed locally
i.e. in the same process, or remotely i.e. across the network. Network access is
implemented using a remote procedure call which is accessed via an application
programmers interface.

10.3.2 The device

The device is at the heart of the DSM. A device is an abstract concept defined
by the DSM. In reality it can be a piece of hardware (e.g. an interlock bit) a
collection of hardware (e.g. a screen attached to a stepper motor) a logical device
(e.g. a taper) or a combination of all these (e.g. an accelerator). Each device
has a unique name. At the ESRF a three field name space has been adopted
consisting of DOMAIN/FAMILY /MEMBER. A document (see Taurel (1993))
exists which describes device names for the ESRF’s Machine Control System. A
similar document exists (see Pepellin (1993)) for the Beam Line Control Systems.

10.3.3 The server

Another integral part of the DSM is the server concept. The server is a process
whose main task is to offer one or more services to one or more clients. To do this
the server has to spend most of its time in a wait loop waiting for clients to connect
to it. This division of labour is known as the client-server concept. It is used
extensively in many systems today (see Mullender (1990) for a good overview of the
state of client-server technology today).

68

resour ce database

CHAPTER 10.

DEVICE SERVER IN C

BY A.GOTZ

< > <
dbase server
ethernet
............ Device Server
.. Class
’ root class
database connection
security
administration
oIC

data

deviceclass

method_finder
object_create
object_delete

data

device

hardware

hardware

Figure 10.1: The Device Server Model

10.3. THE DEVICE SERVER MODEL 69

10.3.4 The root class

All device classes are derived from the same class, the root class called the De-
vServerClass. The DevServerClass contains all common device server code. This
includes all code related to the applications programmer interface, the database con-
nection, security, administration and so on. Because all device classes are derived
from this class they automatically inherit all this code. This makes maintenance
and improvements to the DSM easy to carry out.

10.3.5 The device class

Devices are organised into classes in order to generalise on common features between
devices while at the same time hiding device dependent details. The device class
contains a complete description and implementation of the behaviour of all members
of that class. New device classes can be constructed out of existing device classes.
This way a new hierarchy of classes can be built up in a short time. Device classes
can use existing devices as sub-classes or as sub-objects. The practice of reusing
existing classes is classical for OOP and is one of its main advantages. It encourages
code to be written only once and maintained only once. Implementing device access
in device classes forces the programmer to implement a generic solution.

10.3.6 The resource database

To achieve complete device independence it is necessary however to supplement
device classes with a possibility for configuring device dependencies at runtime.
The utility which does this in the DSM is the resource database. Resources are
identified by an ASCII string and the device name. The link between resource and
the device is done using the device name. Each device class should support a certain
number of device resources. A well written device class will implement all device
dependencies as resources. At device initialisation time the device class interrogates
the resource database for all resources associated with each device being created.

10.3.7 The commands

Each device class implements a list of commands. Commands are very important
because they are the client’s dials and knobs for controlling a device. Commands
are like special methods. They difference being they cannot be inherited by sub-
classes and they have a fixed calling syntax - consisting of one input argument and
on output argument. Arguments can be any C type varying from simple types to
complicated structures. Commands can execute any sequence of actions. However
because all commands are executed synchronously commands timing can become
critical.

Commands are executed across the network using the application programmers in-
terface function dev_putget(). dev_putget () calls a special method implemented
in the root class - the command_handler method. The command_handler calls the
state_handler method implemented in the device class before calling the command
itself. The state_handler implements the state machine for all devices belonging
to that device class. The state machine checks to see wether the command to be
executed is compatible with the present state. The command function is only exe-
cuted if the state handler returns DS_OXK. The control flow at command execution
is represented in figure ?7.

70 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

command
handler

K
client A
execute command

device

Figure 10.2: Flow of command execution

10.3. THE DEVICE SERVER MODEL 71

10.3.8 Executing commands locally

If a device is created in a class or in a program it is possible to execute the device’s
commands locally i.e. in the same process. The convenience function for executing
commands locally is dev_cmd (). Commands executed locally do not have any over-
head and are consequently much quicker than the same commands executed over
the network. This allows programs or other device classes which have to run close to
the hardware because of performance or hardware constraints to use existing device
classes locally. Devices which are created as members of a class are referred to as
sub-objects. For more information on this use of devices refer to the discussion in
Chapter 6.

10.3.9 Executing commands over the network

Network access is implemented in the DSM in the root class. This is achieved with
a remote procedure call (rpc). The DSM is presently use the rpc from SUN —
the Network File System rpc or NFS/RPC. Data is transported in network format
using the eXternal Data Representation (XDR format). The XDR routines are
part of the NFS/RPC software. A library of routines is maintained for all basic C
data types supported. This way not all device server programmers have to learn
how to use the XDR routines. It is possible for the device server programmer to
add new (exotic) types to this list.

10.3.10 The application programmers interface

Device server clients access devices using the application programmer’s interface
(API). For performance reasons the device server API is based on the file paradigm.
The file paradigm is the open-read-write-close paradigm. The device server API
paradigm uses the import-put-get-free paradigm.

The three fundamental APT calls are —

1. A call to import a device :

dev_import (name,ds_handle,access,error)
char *name;

devserver *ds_handle;

long access;

long *error;

2. A call to execute a command on a device :

dev_putget (ds_handle,cmd,argin_ptr,in_type,argout_ptr,out_type,error)
devserver ds_handle;

short cmd;
DevArgument *argin_ptr;
DevType in_type;
DevArgument *argout_ptr;
DevType out_type;
long *error;

3. A call to free a device :

dev_free (ds_handle,error)
devserver ds_handle;
long *error;

72 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

Using these three calls clients can execute all commands implemented in the device
class on an imported device. All calls are synchronous calls. This means that the
clients waits for the call to complete before continuing. If the device server does not
respond or the remote machine is down a timeout will occur. If the client continues
to try executing dev_putget () calls and in the meantime the device server is running
again the device will be automatically reimported. This last feature assumes that
the device has been imported correctly before the connection was lost.

10.4 Objects In C

Very early during the design phases of the Device Server Model (DSM) it was
recognised that the problem of device access is well-suited to Object Oriented Pro-
gramming (OOP). The definition of a generic device which unifies all devices can
be implemented with a root device class from which all other new classes can be
derived. The root device class implements the basic functionality of the DSM while
the device classes implement the device specific functionality. This means that for
each new device class the device server programmer implements, only the new de-
vice related code has to be developed - the basic DSM functionalities (like network
access, a command handler and so on) are automatically inherited by deriving the
new class from the root class.

Although the advantages of OOP are obvious the choice of an OOP language is
not always so obvious. Any choice made had to be compatible with the operating
systems SunOS, HP-UX and OS9 (the operating systems being used presently at
the ESRF). The lowest common denominator in this list is OS9. Operating sys-
tem compatibility means compatibility with the OS9 C language compiler from
Microware (the authors of 0S9). This reduces the choice to a C-like OOP language
(e.g. C++ or Objective C) or developing an OOP programming technique in C.
Seeing as at the time the choice for an OOP language was made (1990) , none of
the C-like OOP languages available on OS9 were compatible with the Microware C
compiler the only solution left was to use OOP programming technique in C.
OOP programming techniques are numerous. This is partly due to the fact that C
lends itself to OOP by its ability to support new types via the typedef construct.
OOP techniques in C are 90% discipline and 10% implementation. The technique
which has been developed for the DSM is called Objects in C or OIC. OIC is
based on the MIT Widget programming model. This chapter will describe OIC and
how to program in it. No prior knowledge is assumed about Widget programming.
The reader is assumed to be conversant in C however.

10.4.1 MIT widgets

The MIT Widget model served as a starting point for the DSM. The MIT Widgets
are a spinoff of the Athena Project and the HP Xray toolkit. For an in depth
description of the Widget model readers are referred to Asente and Swick (1990).
The principal idea behind MIT’s Widgets is to treat graphical interaction objects
(e.g. a push button or a scrollbar) as separate objects. Each object is represented
as a variable of a certain type. The code and data necessary to implement each
graphical object are hidden from the user. The user has a set of functions for
interacting with the object i.e. reading or setting any of its resources. Widgets are
objects which can be created and destroyed. Every Widget belongs to a class. All
Widgets are derived from the same root class - the CoreClass.

The advantage of this method is that all the common code (and data) which every
Widget has to have (e.g. creating an X11 window and storing it’s id) are provided

10.4. OBJECTSIN C 73

in the root class. For every new Widget written only the code which is new to this
widget has to be written (and maintained).

In order for this to work it is necessary to be able to pass code automatically from
one class (e.g. the root class) to other classes, this process is called inheritance.
An elegant and natural way of doing this with classes is to implement sub-classes.
By declaring a new class to be a sub-class of another class, code and data can be
automatically inherited. Widgets implement classes in C using structures.

10.4.2 ESRF devices

Although the MIT Widget Model has some very attractive features it is not com-
pletely suited to providing network transparent device access. The Widget Model
was invented mainly to provide a toolkit for high level X11 programming. Widgets
are created and destroyed locally in a program. They don’t belong to more than
one process at a time. Their main purpose is to hide the complexity of X11 pro-
gramming behind a simple to manage and understand interface. The device access
problem in a distributed control system is a more critical global problem. It has
to provide network access to a wide variety of different devices. There is only one
copy of each device but there may be many clients at any one time. Errors from
devices have to be correctly treated and recovered from - it doesn’t help to simply
kill the program and restart it. On the other hand there are features of the Widget
Model which are compatible with the DSM however.

Instead of reinventing the wheel therefore it was decided to use the MIT Widget
model as much as possible and only write/modify those parts which either did not
exist or were not suited to the device server model.

Amongst those items which were adopted are (1) the Widget naming convention,
(2) the organisation of the private include files, public include files and source code
files and (3) the implementation of classes by structures. Amongst those things
which were added are (1) a method finder which supports inheritance of methods
by subclasses from superclasses, (2) a network manager and (3) a database acces-
sible over the network. The remote database replaces the X11 resource database
which is implemented in the X Server. The database is accessible over the network
via a database server. The Widget root class (CoreClass) has been replaced by
a new root class (the DevServerClass). DevServerClass has been designed to deal
with the network and its resources instead of graphics. It implements (a) the re-
mote procedure calls for the network access, (b) creates a connection to the static
database (so the resources can be accessed), (c) keeps a list of exported devices (so
that network clients can import devices). It also implements a number of standard
methods required for the DSM (e.g. DevMethodCommandHandler, DevMethodEx-
port, DevMethodDestroy).

10.4.3 Naming convention

Every software project needs a naming convention. The naming convention adopted
for the DSM follows the X Toolkit Intrinsics naming convention for Widgets. The
main reason for adopting the Xt naming convention is to be able to use classes in
C as they are used in Widgets.

The following guidelines should be followed when writing device servers :

e Type and procedure names start with uppercase and use capitalization for
compound words.

e Local procedures (i.e. static in C) are in lowercase and use underscores for
compound words.

74 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

e Variable names are in lower case and can use underscores for compound words,

but don’t have to.

e Structure component names are all in lowercase and use underscores for com-

pound words.

e Predefined symbols and constants are in upper case.

e New device classes start with a capital letter and use uppercase for compound

words.

e Each device class has a number of C structures associated with it. Given
a new class name AGPowerSupply the following structures and pointers to
structures must be defined:

Partial device instance structure A GPowerSupplyPart

Complete device instance structure names A GPowerSupplyRec and _A GPowerSupplyRec

— Device instance pointer type name A GPowerSupply

— Partial Class structure name AGPowerSupplyClassPart

— Complete Class structure names A GPowerSupplyClassRec and - A GPowerSupplyClassRec

— Class structure variable aGPowerSupplyClassRec

— Class pointer variable aGPowerSupplyClass

10.4.4 Private (P.h) include files

The private .h file for a device class is included by all device classes that are sub-
classes of it. It should contain :

e A reference to the public .h file for the class (e.g. AGPowerSupply.h).

e A reference to the private .h file for the superclass (e.g. DevServerP.h).

e The new fields that the device instance adds to the superclass’s device struc-

ture.

e The complete device instance structure for this device (e.g. AGPowerSup-

plyRec).

e The new fields that this device class adds to the superclass’s device class

structure.

e The complete device class structure for this device (e.g. AGPowerSupply-

ClassRec).

e Symbol and constant definitions which are private to this class, i.e. which
should be hidden from users of this class but which are nonetheless required
by the class and its sub-classes.

Here is an example private include file AGPowerSupplyP.h -

/*static char RcsId[]

" $Header: AGPowerSupplyP.h.tex,v 1.1 93/04/05 18:16:00 goetz Exp

/***

File: AGPowerSupplyP.c

Project: Device Servers

10.4. OBJECTSIN C 75

Description: private include file for the class
of AG simulated powersupplies.

Author(s); Andy Goetz
Original: March 1991

$Log: AGPowerSupplyP.h.tex,v §
Revision 1.1 93/04/05 18:16:00 18:16:00 goetz (Andy Goetz)
Initial revision

Copyright (c) 1991 by European Synchrotron Radiation Facility,
Grenoble, France

***/

#ifndef _AGPOWERSUPPLYP_h
#define _AGPOWERSUPPLYP_h

/*
* as subclass of the powerSupplyClass include PowerSupplyClass private
* definitions

*/
#include <PowerSupplyP.h>

typedef struct _AGPowerSupplyClassPart {
int nada;

X
AGPowerSupplyClassPart;

typedef struct _AGPowerSupplyPart {
int nada;

}
AGPowerSupplyPart;

typedef struct _AGPowerSupplyClassRec {
DevServerClassPart devserver_class;
PowerSupplyClassPart powersupply_class;
AGPowerSupplyClassPart agpowersupply_class;
}
AGPowerSupplyClassRec;

extern AGPowerSupplyClassRec aGPowerSupplyClassRec;

typedef struct _AGPowerSupplyRec {
DevServerPart devserver;
PowerSupplyPart powersupply;
AGPowerSupplyPart agpowersupply;
X
AGPowerSupplyRec;

76 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

/*
* private constants to be used in the AGPowerSupplyClass
*/

#define AG_MAX_CUR 100.0

#define AG_MIN_CUR 0.0

#define AG_PER_ERROR 0.001

/* fault values */

#define AG_OVERTEMP 0x01
#define AG_NO_WATER 0x02
#define AG_CROWBAR 0x04
#define AG_RIPPLE 0x08
#define AG_MAINS 0x10
#define AG_LOAD 0x20
#define AG_TRANSFORMER 0x40
#define AG_THYRISTOR 0x80

#endif _AGPOWERSUPPLYP_h

10.4.5 Public (.h) include files

The public .h file for a device class is included by other device classes or programs
which create devices belonging to this class. It contains :

e A reference to the public .h files for the device class’ superclass (e.g. De-
vServer.h).

e The class structure pointer that is used to create devices of this class (e.g.
aGPowerSupplyClass).

e The instance structure pointer of the template device that is used to initialise
new devices of this class(e.g. aGPowerSupply).

e The C type that is used to declare device instances of this class (e.g. AGPow-
erSupply)

e Symbols and constants which are related to this class and are of interest to
the device classes and/or programs which create local copies of this device.

Here is an example public include file AGPowerSupply.h -

/*static char RcsId[] = " $Header: AGPowerSupply.h.tex,v 1.1 93/04/05 18:15:57 goetz Exp ¢
/K s ok ks o ks e sk o o ksl ks o sk s ksl sk sk s e ks o ks o ks o s o sk sk sk o ks ke ks s ksl o k sk o sk ok

File: AGPowerSupply.h

Project: Device Servers

Description: public include file for implementing the class
of AG simulated powersupplies.

10.4. OBJECTSIN C 7

Author(s); Andy Goetz
Original: March 1991

$Log: AGPowerSupply.h.tex,v $
Revision 1.1 93/04/05 18:15:57 18:15:57 goetz (Andy Goetz)
Initial revision

Copyright (c) 1991 by European Synchrotron Radiation Facility,
Grenoble, France

***/

#ifndef _AGPowerSupply_h
#define _AGPowerSupply_h

typedef struct _AGPowerSupplyClassRec *AGPowerSupplyClass;
typedef struct _AGPowerSupplyRec *AGPowerSupply;

extern AGPowerSupplyClass aGPowerSupplyClass;
extern AGPowerSupply aGPowerSupply;

/%
* public symbols
*/

#endif

10.4.6 Source (.c) code files

The source code can be divided into two parts (a) the code to implement the device
class (e.g. AGPowerSupply.c), and (b) the code to implement the startup procedure.
The startup is only required when a server process is being customised. This will
be treated in chapter 5.

The source file implementing the device class normally contains the entire code for
implementing the device class. The class implementation is private and is meant
to be accessed only via the class structure i.e. via its methods. For this reason all
functions appearing in this file, especially the class methods and all device server
commands are declared as static in C. The source file initialises the class structure
defined in the Private include file. The method_list and n_methods variables are
initialised by static assignments before load time. All other initialisation is done at
runtime - this is more flexible and makes the code upwards compatible.

Here is an example of the header and all related declarations for the AGPowerSup-
plyClass .c file -

static char RcsId[] = "@(#) $Header: class_header.c.tex,v 1.1 93/04/05 18:16:11 goetz Exp $
/03K ko ok ok o o ko o sk o ok o K ok ok o ko o o o ok o ko K o sk o ok o K o K ok o ko sk ok o ok K sk o ko ok o o ok ook o K ok ok o ok o
File: AGPowerSupply.c

Project: Device Servers

78 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

Description:

Author(s);

Original:

Code for implementing the AG Power Supply class

The AG Power Supply is a simulation of a typical

power supply at the ESRF. This means it has two

main state DEVON and DEVOFF, DEVSTANDBY is unknown.

All the common power supply commands are implemented.
The simulation runs under 0S9 and Unix. It has been
developed for application program developers who want to
test their applications without accessing real devices

A. Goetz

March 1991

$Log: class_header.c.tex,v $
Revision 1.1 93/04/05 18:16:11 18:16:11 goetz (Andy Goetz)
Initial revision

* Revision 1.1

91/05/02 08:25:31 08:25:31 goetz (Andy Goetz)

* Initial revision

*

Copyright (c) 1991 by European Synchrotron Radiation Facility,

Grenoble, France

***/

#include <API.h>

#include <DevServer.h>
#include <DevErrors.h>
#include <DevServerP.h>
#include <PowerSupply.h>
#include <AGPowerSupplyP.h>
#include <AGPowerSupply.h>

/%

* public methods

*/

static long class_initialise();
static long object_create();
static long object_initialise();
static long state_handler();

static DevMethodListEntry methods_list[] = {
{DevMethodClassInitialise, class_initialise},
{DevMethodCreate, object_create},
{DevMethodInitialise, object_initialise},

s

{DevMethodStateHandler, state_handler},

AGPowerSupplyClassRec aGPowerSupplyClassRec = {

10.4. OBJECTSIN C 79

/* n_methods */ sizeof (methods_list)/sizeof (DevMethodListEntry),
/* methods_list */ methods_list,

};

AGPowerSupplyClass aGPowerSupplyClass =
(AGPowerSupplyClass)&aGPowerSupplyClassRec;

/*
* public commands

*/

static long dev_off();
static long dev_on();
static long dev_state();
static long dev_setvalue();
static long dev_readvalue();
static long dev_reset();
static long dev_error();
static long dev_local();
static long dev_remote();
static long dev_status();
static long dev_update();

static DevCommandListEntry commands_list[] = {

{Dev0ff, dev_off, D_VOID_TYPE, D_VOID_TYPE},

{Dev0n, dev_on, D_VOID_TYPE, D_VOID_TYPE},

{DevState, dev_state, D_VOID_TYPE, D_SHORT_TYPE},
{DevSetValue, dev_setvalue, D_FLOAT_TYPE, D_VOID_TYPE},
{DevReadValue, dev_readvalue, D_VOID_TYPE, D_FLOAT_READPOINT},
{DevReset, dev_reset, D_VOID_TYPE, D_VOID_TYPE},

{DevStatus, dev_status, D_VOID_TYPE, D_STRING_TYPE},
{DevError, dev_error, D_VOID_TYPE, D_VOID_TYPE},

{DevLocal, dev_local, D_VOID_TYPE, D_VOID_TYPE},

{DevRemote, dev_remote, D_VOID_TYPE, D_VOID_TYPE},

{DeVUpdate, dev_update, D_VOID_TYPE, D_STATE_FLOAT_READPOINT},
};

static long n_commands = sizeof (commands_list)/sizeof (DevCommandListEntry);

/*
* a template copy of the default powersupply that normally gets created
* by the DevMethodCreate. it is initialised in DevMethodCLassInitialise
* to default values. these defaults can also be specified in the resource
* file or via an admin command.

*/

static AGPowerSupplyRec aGPowerSupplyRec;
static AGPowerSupply aGPowerSupply =
(AGPowerSupply)&aGPowerSupplyRec;

/*
* template resource table used to access the static database

*/

80 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

db_resource res_table[] = {
{"state",D_LONG_TYPE},
{"set_val",D_FLOAT_TYPE},
{"channel" ,D_SHORT_TYPE},
{"n_ave",D_SHORT_TYPE},
{"conv_unit",D_STRING_TYPE},
{"set_offset",D_FLOAT_TYPE},
{"read_offset",D_FLOAT_TYPE},
{"set_u_limit",D_FLOAT_TYPE},
{"set_1_limit",D_FLOAT_TYPE},
{"polarity" ,D_SHORT_TYPE},

};

int res_tab_size = sizeof(res_table)/sizeof (db_resource);

10.4.7 The device class C structure

In OIC each device class is represented by a C structure. Understanding this struc-
ture is vital to understanding OIC. This section will describe the various components
of the class structure. The next section will describe how they should be initialised.
Each class structure is made up of a number of fields (cf. figure ?7?). Each of these
fields is in itself a structure, called a partial structure. Each device class defines (in
the private include file) its own partial structure. The partial structure contains all
data which are common to all members of that class.

A class hierarchy is defined by the hierarchy of partial structures. For example if a
class Z contains the partial structures X, Y and Z (in that order) then one knows
that it belongs to the root class X, is a member of the subclass Y and is itself the
class Z. Because all device classes are members of the root class DevServerClass,
the first partial structure of any device class must be the DevServerClass partial
structure, DevServerClassPart.

The DevServerClassPart plays a very special role in the implementation of OIC.
It defines the fields necessary for implementing and inheriting methods. This is a
fundamental part of OIC because the Objects In C method finder depends
completely on the first partial structure of every class structure being of
type DevServerClassPart.

The fact that the DevServerClass has a dual purpose i.e. implementing methods
in OIC and device access can be confusing. The reasons for this are (as usual)
historical. These two functions could have been implemented separately!. In OIC
this has not been done and device server programmers have to be aware of this. The
implications of this are that today only one root class exists - the DevServerClass,
and that OIC is used only to implement device servers.

In the same way that the first partial structure of any device class has to be the
root class (DevServerClass) so the device classes own partial structure should be
the last partial structure. All partial structures in between should be in hierarchical
order of the superclasses of the class.

A copy of each device classes C structure is created (space is reserved and it is
initialised) once in every program where the device class is used. The structure
has the same name as the device classes structure type except that the first char-
acter is a small letter. For example the class A GPowerSupplyClass has the device
class structure type AGPowerSupplyClassRec whereas the copy of the device class
structure is called aGPowerSupplyClassRec.

1One obvious way of doing this in OIC would have been to define two partial structures — one
called ClassPart which contains the fields required by the method_finder and one called DevServer-
ClassPart which contains only the fields necessary for the DevServerClass.

10.4. OBJECTSIN C 81

For each device class structure there is a corresponding device class. The device
class is a pointer to the copy of the class structure?. The same convention is followed
for the device class as for device class structure. For example for the device class
type AGPowerSupplyClass the actual device class (which must begin with a small
letter) is aGPowerSupplyClass. A program which wants to instantiate a device
of a certain class or wants to use a device class as one of its superclasses uses
the pointer to the copy (the one which starts with a small letter) of the device
class (aGPowerSupplyClass in this example). The device class pointer is defined as
external in the public include file and defined and initialised in the .c source code
file which implements the device class. Referring to the class pointer in a program
forces the loader to link the object code for the class being referred to with the
program. This simple but efficient mechanism allows classes to be linked with a
program without referring to any of the class source code.

10.4.8 Initialising the device class structure

Each device class is a subclass of DevServerClass (the root class). This means
that the first structure within a device class structure is the partial part of the
DevServerClass i.e. DevServerClassPart. DevServerClassPart structure contains :

typedef struct _DevServerClassPart {

int n_methods; /*number of methodsx*/

DevMethodList methods_list; /*pointer to list of methods*/

DevServerClass superclass; /*pointer to superclassx*/

DevString class_name; /*name of class*/

DevBoolean class_inited; /*flag indicating if class initialisedx*/

int n_commands; /*number of commandsx*/

DevCommandList commands_list; /*pointer to list of commandsx*/

DevString server_name; /*server namex/

DevString host_name; /*host namex/

long prog_number; /*NFS/RPC program number of serverk/

long vers_number; /*NFS/RPC version number of serverk/
}

DevServerClassPart;

All device classes have their own copy of this structure pointed to by the class
pointer e.g. aGPowerSupplyClass. This is necessary so that each class can have its
own list of implemented methods, its own superclass, its own class name, its own
class_inited flag and its own commands list. The server name, host name, program
number and version number are stored only once - in the DevServerClassPart of
the DevServer class.

The n_methods and methods_list are crucial for the implementing of classes. The
method_finder (cf. below) uses these two fields to locate the method which will be
executed. In order not to be tied down by the definition of the DevServerClassPart
structure it was decided very early on in the development of the device servers that
these two fields will be the only ones which are initialised at compile time i.e. in
static data area. The other fields will be initialised in the class_initialise method
by assignment statements. This makes existing code upwards compatible even if
the DevServerClassPart structure is reorganised or other fields added to it in the
future. The fields n_methods and methods_list have to be initialised with the number
of methods and the list of methods in the .c file before any code is executed i.e. at
compile and load time.

20 woe betide the device server programmer who has not understood pointers and structures
in C!

82 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

devServerClass

{{.. <
superclass=0;
class name =" DevServerClass';

} I5'evServerCIassPart;
} DevServer ClassRec

power SupplyClass

{{

éﬂperclass =
class name =" Power SupplyClass™;

}I5'evServerCIassPart;

int nada =" something";

}“ﬁ’owerSuppIyCIassPart;
Power SupplyClassRec;

aGPower SupplyClass

{{..
superclass=;
class name =" AGPower SupplyClass;

}ISevServerCIassPart;

'L'J.ninitialised structure

}I5bwer SupplyClassPart;

int nada =" something else";

}A'GPowerSuppIyCIassPart;
} AGPower SupplyClassRec;

Figure 10.3: The device class structure for the AGPowerSupplyClass, a class with
three levels of hierarchy. This diagram demonstrates the organisation of the partial
structures of each class. It should be noted that each class structure has its own
(initialised) copy of the DevServerPart. Note also that aGPowerSupplyClass has
an (uninitialised) copy of PowerSupplyClassPart.

10.4. OBJECTSIN C 83

The following fields of DevServerClassPart are initialised in the class_initialise
method -

e The superclass field should contain a pointer to the class structure of the device
classes superclass. This pointer has to be initialised correctly, otherwise the
method_finder will not be able to follow the class tree and will fail the first
time the application tries to execute a method. A null pointer implies this is
a root class. At present only the DevServerClass (the only root class) has a
superclass pointer set to NULL.

e The class_name is an ascii string containing the name of the class. This should
be equivalenced to a symbol defined in the Private include file.

e The class_inited field is a flag set to 1 by class_initialise. It is used by the
method_finder to determine whether the class_initialise method has been called
or not.

e The n_commands field should be initialised to the number of commands im-
plemented for this class.

e The commands_list should be initialised to point to the list of commands.

After initialising the DevServerClassPart the class should initialise its own partial
part. Taking the same example as used above - this means initialising AGPower-
SupplyClassPart (of the structure pointed to by aGPowerSupplyClass).

10.4.9 The device C structure

Just like each for each device class there is a C structure in OIC, so for each device
created in a program using OIC there is a device structure. The device structure is
created (in the object_create method implemented in the device class) by allocating
memory for it and initialising it. Once created the device is referred to by its
pointer. Each device belongs to a class. Each device contains a pointer to its class.
Any methods or commands implemented in the device’s class can be executed by
calling the method_finder and specifying the device.

Fach device has its own copy of the device structure. This means each device has
its own copy of the all data stored in the device structure. Programmers should be
aware of this when defining the device structure. Any data which is common to all
devices should be stored in the device’s class structure. Devices only contain data
not code. All code implemented in a class is common to all devices.

10.4.10 Initialising the device structure

The first part of each device structure is the DevServerPart structure. DevServer-
Part contains the following fields :

typedef struct _DevServerPart {

char *name; /*name of devicex/
char dev_type[24]; /*pointer to string containing device type*/
DevServerClass class_pointer; /*pointer to class type*/
long state; /*device statex/
long n_state; /*next device statex/
}
DevServerPart;

All these values (except the n_state variable) have to be initialised at device creation
time. The most important is the class_pointer variable which is used by the method
finder to locate the device class structure.

84 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

10.4.11 The template device

Each device is initialised at creation time with default values. These default values
can be defined (in order of precedence) either -

1. in the class source code (the socalled code defaults), or

2. in the resource database as class default values (the socalled class defaults),
or

3. in the resource database as device default values (the socalled device defaults).

Each class has a template copy of a device which is initialised at runtime by the
class_initialise method. It is used for initialising devices of this class. Analogous
to the class pointer, aGPowerSupplyClass, the template device is called aGPower-
Supply. It is defined and should only be accessible from the classes source code.
It should be initialised in the class_initialise() to the predefined code defaults
which can be overridden by the class defaults stored in the static database. This
means the class_initialise() should access the database after it has initialised
the default object. This object will be used to initialise all newly created objects of
that class. In C this is achieved by a single structure assignment statement. The
defaults in the template object can be overridden by the devices defaults stored in
the database.

10.4.12 Methods

Methods are C functions but with a difference. The main difference is that they
are accessed via a method_finder which uses run-time binding and not by being
called directly like with traditional functions which implies compile-time binding.
Methods are identified by a symbol representing an integer. All symbols start with
the preffix DevMethod. The naming convention is to distinguish compound words
by capital letters. The symbols for methods are stored in the DevServer.h file - new
methods can be added here or in the public include file.

Methods, like traditional C functions, do not have a fixed argument syntax. A
function implementing a method may use any argument syntax. The application
executing the method should know what arguments are required, their type and in
what order to pass them.

All methods should return an integer value which reflects the execution status of
the method. For the return value the following convention has been adopted -
DS_NOTOK is returned if the method fails to execute correctly, and DS_OK if it
succeeds. These symbols are defined in the DevServer .h file.

All methods should be defined as being static in C i.e. only directly accessible from
within the classes source code file. Doing this forces applications and subclasses
to use the method_finder to execute a class’s methods. This is what is commonly
termed code-hiding and is one of the advantages of Object Oriented Programming.
Another advantage of the method_finder is that it supports code inheritance. A
subclass can inherit code from its superclass(es). This is the case for all subclasses
of the DevServerClass for example - they inherit the network interface code which
is implemented in DevServerClass.

The method finder function

Methods are accessed using the method_finder. The method_finder is implemented
in the ds__method -_finder () function. The method_finder lies at the heart of the
OIC methodology. It searches the objects class structure for a specifed method. If
it doesn’t find the method in the objects class it searches the methods_list of the

10.4. OBJECTSIN C 85

object’s superclass. If it can’t find the method there it searches the superclass of
the superclass and so on until it reaches the root class (devServerClass). The
function pointer for the first method found which matches the desired method is
returned and can be executed. It is up to the calling routine to know and specify
the correct syntax. The present implementation of the ds_method finder () does
an exit () if no matching method is found.

The method finder has following calling syntax -

DevMethodFunction ds__method_finder(DevServer ds, DevMethod method) ;
DevMethodFunction is defined as a pointer to function i.e.
typedef long int (*DevMethodFunction) ();

The returned function pointer points to the function implementing the desired
method which was found by the method_finder. It is then necessary to call the
function. An example of using the method finder to search for and execute the
object_initialise method is -

ds__method_finder(ds_list[i],DevMethodInitialise) (ds_list[i],error)

The device create function

The convenience function ds__create() is used to create an device of a given device
class. The create function serves a special function. A device class is accessed via
its devices and not directly. Each device therefore contains a pointer to its class
structure. In order for this to be true each device needs to be created and ini-
tialised first. A dedicated method exists in each class for doing this (DevMethod-
Create). The ds_create() function finds and execute this method for a given
class. ds__create() is a special version of the ds__method_finder () which finds
and executes the DevMethodCreate for a class. It takes a device class pointer (e.g.
aGPowerSupplyClass) and the device’s name as parameters and returns a pointer
to the created device.

The device create function has following calling syntax -

long ds__create (char *name, void *ptr_ds_class, void *ptr_ds_ptr, long *error)

The device destroy function

The convenience function ds__destroy() is used for destroying objects. Devices
are rarely destroyed in a device server. This is mainly because the device server’s
main task is to serve all devices as long as it exists. In the event that a device
has to be destroyed however the DevMethodDestroy is called. ds__destroy() uses
the ds__method finder () for finding and executing DevMethodDestroy. The De-
vServerClass has DevMethodDestroy implemented - its main role is to deallocate
the space occupied by the device structure.

The device destroy function has following syntax -

long ds__destroy (void *ptr_ds_class, void *ptr_ds, long *error)

The class initialise method

All device classes must have at least the class_initialise method. This method
is called once by the method_finder the first time a device of this class (or a de-
vice belonging to a subclass of this class) is created. This is taken care of by the
method_finder. It is used to initialise class specific data which are required by that
class. Amongst other things it should initialise the class structure and the default

86 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

object (cf. above). It can also be used to do things required by the class like fork-
ing other processes. The class_initialise method of a class should not rely on the
class_initialise method of any of its superclasses. Class_initialise methods are called
from bottom to top i.e. class_initialise of the DevServerClass is called last.

The class initialise method must have following calling syntax -

static long class_initialise(long *error)

Here is an example class initialise method (for the AGPowerSupplyClass) -

/

Function: static long class_initialise()

Description: Initialise the AGPowerSupplyClass, is called once for
this class per process. class_initialise() will initialise
the class structure (aGPowerSupplyClass) and the default
powersupply device (aGPowerSupply).

Arg(s) In: none

Arg(s) Out: long *error - pointer to error code if routine fails.

*/

static long class_initialise(error)
long *error;

{
AGPowerSupply ps;
int state;
/*
* AGPowerSupplyClass is a subclass of PowerSupplyClass
*/
aGPowerSupplyClass->devserver_class.superclass = (DevServerClass)powerSupplyClass;
aGPowerSupplyClass->devserver_class.class_name = (char*)malloc(sizeof ("AGPowerSupplyCl:
sprintf (aGPowerSupplyClass->devserver_class.class_name, "AGPowerSupplyClass");
/*
* commands implemented for the AG PowerSUpply class
*/

aGPowerSupplyClass->devserver_class.n_commands = n_commands;
aGPowerSupplyClass—>devserver_class.commands_list = commands_list;

aGPowerSupplyClass—>devserver_class.class_inited = 1;
/%
* initialise the template powersupply so that DevMethodCreate has
* default values for creating a powersupply, these values will be
* overridden by the static database (if defined there).

*/

aGPowerSupply->devserver.class_pointer = (DevServerClass)aGPowerSupplyClass;
/*
* default is to start with powersupply switched OFF; the state
* variable gets (ab)used during initialisation to interpret the

10.4. OBJECTSIN C

87

* initial state of the powersupply: 0==DEVOFF, 1==DEVON. this is
* because the database doesn’t support the normal state variables
* like DEVON, DEVSTANDBY, DEVINSERTED, etc.

*/

aGPowerSupply->devserver.state =
aGPowerSupply->devserver.n_state =

0;

aGPowerSupply->powersupply.set_val = 0.0;

aGPowerSupply->powersupply.read_val = 0.0;

aGPowerSupply->powersupply.channel = 1;

aGPowerSupply->powersupply.n_ave =

1;

aGPowerSupply->devserver.state;

aGPowerSupply->powersupply.conv_unit = (char*)malloc(sizeof ("AMP"));

sprintf (aGPowerSupply->powersupply.conv_unit,"AMP");
aGPowerSupply->powersupply.set_offset = 0.0,

aGPowerSupply->powersupply.read_offset = 0.0;
aGPowerSupply->powersupply.set_u_limit = AG_MAX_CUR;
aGPowerSupply->powersupply.set_1_limit = AG_MIN_CUR;

aGPowerSupply->powersupply.polarity = 1.0;

/%

* interrogate the static database for default values

*/

ps = aGPowerSupply;

res_table[0]

.resource_adr =

& (ps->devserver.state) ;

res_table[1].resource_adr = &(ps->powersupply.set_val);
res_table[2] .resource_adr = &(ps->powersupply.channel);
res_table[3].resource_adr = &(ps->powersupply.n_ave);

res_table[4]
res_table[5]
res_table[6]
res_table[7]
res_table[8]
res_table[9]

.resource_adr =
.resource_adr =
.resource_adr =
.resource_adr =
.resource_adr =
.resource_adr =

& (ps->powersupply.
& (ps->powersupply.
& (ps->powersupply.
& (ps->powersupply.
& (ps->powersupply.
& (ps->powersupply.

conv_unit);
set_offset);
read_offset);
set_u_limit);
set_1_limit);
polarity);

if (db_getresource ("CLASS/AGPS/DEFAULT" ,res_table,res_tab_size,error))

{
printf("class_initialise(): db_getresource() failed, error J%d\n",error);
return(DS_NOTOK) ;
}
else
{
printf ("default values after searching the static database\n\n");
printf ("CLASS/AGPS/DEFAULT/state D_LONG_TYPE %6d\n",
ps—>devserver.state) ;
printf ("CLASS/AGPS/DEFAULT/set_val D_FLOAT_TYPE %6.0f\n",
ps->powersupply.set_val);
printf ("CLASS/AGPS/DEFAULT/channel D_SHORT_TYPE %6d\n",
ps—>powersupply.channel) ;
printf ("CLASS/AGPS/DEFAULT/n_ave D_SHORT_TYPE %6d\n",
ps->powersupply.n_ave) ;
printf ("CLASS/AGPS/DEFAULT/conv_unit D_STRING_TYPE %6s\n",
ps->powersupply.conv_unit) ;
printf ("CLASS/AGPS/DEFAULT/set_offset D_FLOAT_TYPE %6.0f\n",

ps—>powersupply.set_offset);

88 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

printf ("CLASS/AGPS/DEFAULT/read_offset D_FLOAT_TYPE
ps—>powersupply.read_offset);

printf ("CLASS/AGPS/DEFAULT/set_u_limit D_FLOAT_TYPE
ps—>powersupply.set_u_limit);

printf ("CLASS/AGPS/DEFAULT/set_1_limit D_FLOAT_TYPE
ps—>powersupply.set_1_limit);

printf ("CLASS/AGPS/DEFAULT/polarity D_SHORT_TYPE
ps->powersupply.polarity) ;

}

printf ("returning from class_initialise()\n");
return(DS_OK) ;

The device create method

%6.0f\n",
%6.0f\n",
%6.0f\n",

%6d\n",

Classes that can be instantiated require a DevMethodCreate method for creating
devices of a device class. A convenience function, ds__create(), exists for calling
this method. The DevMethodCreate method has the job of allocating the space for
the new device and initialising it with its name and the contents of the template
device. The method can also be used to do any other static housekeeping which

might be required by the newly created device.
The device create method must have following calling syntax -

static long object_create(char *name, DevServer *ds_ptr, long *error)

Here is an example object create method (for the AGPowerSupplyClass) -

/Function: static long object_create()

Description: create a AGPowerSupply object. This involves allocating
memory for this object and initialising its name.

Arg(s) In: char *name - name of object.

Arg(s) Out: DevServer *ds_ptr - pointer to object created.

long *error - pointer to error code (in case of failure)

static long object_create(name, ds_ptr, error)
char *name;

DevServer *ds_ptr;

long *error;

' AGPowerSupply ps;
printf ("arrived in object_create(), name %s\n",name);
ps = (AGPowerSupply)malloc(sizeof (AGPowerSupplyRec));
/%

* initialise server with template

*/

*/

10.4. OBJECTSIN C 89

* (AGPowerSupplyRec*)ps = *(AGPowerSupplyRec*)aGPowerSupply;

/*
* finally initialise the non-default values

*/

ps->devserver.name = (char*)malloc(strlen(name));

sprintf (ps->devserver.name,"/s" ,name) ;

xds_ptr = (DevServer)ps;

printf("leaving object_create() and all OK\n");

return(DS_0K) ;

The device initialise method

DevMethodlInitialise is called by the application after the device has been cre-
ated. It is used to retrieve the device related parameters from the database and to
do the active (i.e. physical device related) initialisation of the device.

The device initialise method should have following calling syntax -

static long object_initialise(DevServer ds, long *error)

Here is an example device initialise method (for the AGPowerSupplyClass) -

/

Function: static long object_initialise()

Description: initialise a AGPowerSupply object. This involves
retrieving all resources for this device from the
resource database.

Arg(s) In: AGPowerSupply *name - name of object.

Arg(s) Out: long *error - pointer to error code (in case of failure)

*/

static long object_initialise(ps,error)
AGPowerSupply ps;
long *error;
{
printf("arrived in object_initialise()\n");
/*
* initialise powersupply with values defined in database

*/

res_table[0]
res_table[1]
res_table[2]
res_table[3]
res_table[4]
res_table[5]
res_table[6]

.resource_adr =
.resource_adr =
.resource_adr =
.resource_adr =
.resource_adr
.resource_adr =
.resource_adr

& (ps->devserver.state) ;

& (ps->powersupply.set_val);
& (ps->powersupply.channel) ;
& (ps->powersupply.n_ave) ;

= & (ps->powersupply.conv_unit) ;

& (ps->powersupply.set_offset);

= &(ps->powersupply.read_offset);

90 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

res_table[7] .resource_adr
res_table[8] .resource_adr
res_table[9] .resource_adr

& (ps->powersupply.set_u_limit);
& (ps—>powersupply.set_1_limit);
& (ps—>powersupply.polarity) ;

if (db_getresource(ps->devserver.name,res_table,res_tab_size,error))

{
printf("class_initialise(): db_getresource() failed, error %d\n",error);
return(DS_NOTOK) ;

}

else

{
printf("initial values after searching the static database for J%s\n\n",
ps—>devserver.name) ;

printf ("state D_LONG_TYPE %6d\n" ,ps->devserver.state);
printf ("set_val D_FLOAT_TYPE %6.0f\n",ps->powersupply.set_val);
printf ("channel D_SHORT_TYPE %6d\n",ps->powersupply.channel);
printf("n_ave D_SHORT_TYPE %6d\n",ps->powersupply.n_ave);
printf("conv_unit D_STRING_TYPE %6s\n",ps->powersupply.conv_unit);

printf ("set_offset D_FLOAT_TYPE 76.0f\n",ps->powersupply.set_offset);
printf("read_offset D_FLOAT_TYPE %6.0f\n",ps->powersupply.read_offset);
printf("set_u_limit D_FLOAT_TYPE %6.0f\n",ps->powersupply.set_u_limit);
printf("set_1_limit D_FLOAT_TYPE %6.0f\n",ps->powersupply.set_1_1limit);

printf ("polarity D_SHORT_TYPE %6d\n",ps->powersupply.polarity) ;
/%
* interpret the initial state of the powersupply
*/
if (ps->devserver.state == 1)
{
printf ("switching ON\n");
dev_on(ps,NULL,NULL,error) ;
/*
* if switched ON then set the current too
*/
dev_setvalue(ps,&(ps->powersupply.set_val) ,NULL,error) ;
}
else
{
printf ("switching OFF\n");
/%
* default is to assume the powersupply is OFF
*/
dev_off (ps,NULL,NULL,error) ;
}
}

return(DS_0K) ;

10.5 How to write a Device Server

Writing a device server can be made easier by adopting the correct approach. This
section will describe how to write a device server. It is divided into the following

10.5. HOW TO WRITE A DEVICE SERVER 91

parts - the team, understanding the device, abstracting the device, defining de-
vice commands, designing, coding, debugging, and a general section on standard
functions.

10.5.1 Synopsis

The process of writing a device server is an iterative one (see figure ?7). It starts
off with the device documentation and a set of specifications which describe what is
required. Often these specifications will not contain anything about logical devices
and their commands nor about the class hierarchies. This is natural because of
the specifications do not come from a device server programmer but from a user.
It is the job of the device server programmer then to understand what the device
represents and how it should be defined logically. At this stage the programmer
should start thinking about class hierarchy and structure. Maximum use should be
made of existing device classes, either as superclasses or as sub-objects (refer to the
list of existing DSUGs for more information about device classes). Once the device
has been well understood and defined thought should go into the commands to be
implemented. At both stages the programmer should confer with the user to see
whether the proposed implementation corresponds with the user’s requirements and
eventual evolutions of the software. The next stage is designing the software and
writing the documentation. Only once these two tasks have been finished should
coding start. The final phase is testing the code - never deliver untested software
to the client.

Hopefully after going through the seven stages the programmer has a device server
ready to be used. However the world is not a perfect place - the device might
not correspond to what the user had in mind or the user might change his mind.
Consequently even if the device server is ready and tested it might be necessary to
modify it, add new functionalities to it or even rewrite it. Do not be afraid to go
back to stage 1 and start again. The important thing is to deliver useful software
which does the job well. The process should be repeated as often as necessary.

10.5.2 The team

When writing a device server it is useful to consider the people who will be involved
and/or concerned -

e Equipment Responsible is the person who is responsible for the hardware,
he is the lower level client of the Device Server Programmer.

e Device Server Programmer is the person who will write the device class
and encapsulate it in a server.

e Applications Programmer is the person who will use the device server
to talk to the hardware, she is the upper level client of the Device Server
Programmer.

e Device Server Maintenance Person is responsible for maintaining the
device server, is not necessarily the Device Server Programmer (but is often
heard cursing the Device Server Programmer).

10.5.3 Understanding the device

The first step before writing a device server is to develop an understanding of the
hardware to be programmed. The Equipment Responsible should have description
of the hardware and its operating modes (manuals, spec sheets etc.). The Equip-
ment Responsible must also provide written specifications of what the device

92 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

SPECIFICATIONS DEVICE SERVER

under stand
device

define device

define
commands

design class

Figure 10.4: The iterative procedure for writing a device server

10.5. HOW TO WRITE A DEVICE SERVER 93

server should do. The Device Server Programmer should demand an exact descrip-
tion of the registers, alarms, interlocks and any timing constraints which have to be
kept.

It is often hard to get hold of this essential information. But the Device Server
Programmer should not give up. In very difficult cases it might be necessary to
apply pressure on the Equipment Responsible (by explaining the situation to his
superior for example) to produce the relevant information (i.e. device description
and specifications).

It is very important to have a good understanding of the device interfacing before
starting designing a new class. Some of the classic interfaces encountered while
writing device servers are -

o serial line

o field bus

e FEthernet

e IEEFE /88

e memory mapped

The most efficient interface being the memory mapped ones of course. Serial lines
and IEEE interfaces although very common are notorious for being laborious to
program and inefficient in their use. Many devices do not require speed and one
often finds serial line and IEEE interfaces for devices. Where possible however I
advise programmers to use memory mapped interfaced devices instead.

10.5.4 Abstracting the device

Once the Device Server Programmer has understood the hardware the next impor-
tant step is to define what is a logical device i.e. what part of the hardware will be
abstracted out and treated as a logical device. In doing so the following points of
the DSM should be kept in mind -

e Each device is known and accessed by its ascii name.

e The device is exported onto the network to be imported by applications.
e Each device belongs to a class.

e A list of commands exists per device.

e Applications use the device server api to execute commands on a device.

The above points have to be taken into account when designing the level of device
abstraction. The definition of what is a device for a certain hardware is primarily the
job of the Device Server Programmer and the Applications Programmer but can
also involve the Equipment Responsible. The Device Server Programmer should
make sure that the Applications Programmer agrees with her definition of what is
a device.

Here are some guidelines to follow while defining the level of device abstraction -

o efficiency, make sure that not too fine a level of device abstraction has been
chosen. If possible group as many signals together to form a device. Discuss
this with the Applications Programmer to find out what is efficient for her
application.

94 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

¢ hardware independency, one of the main reasons for writing device servers
is to provide the Applications Programmer with a software interface as op-
posed to a hardware interface. Hide the hardware structure of the device. For
example if the user is only interested in a single channel of a multichannel
device then define each channel to be a logical device. The user should not
be aware of hardware addresses or cabling details. The user is very often a
scientist who has a physics-oriented worldview and not a hardware-oriented
worldview. Hardware independency also has the advantage that applications
are immune to hardware changes to the device

e object oriented worldview, another raison d’etre behind the device server
model is to build up an object oriented view of the world. The device should
resemble the user’s view of the object as closely as possible. In the case of the
ESRF’s Machine Control System for example the devices should resemble an
operator’s view of the machine.

e atomism, each device can be considered like an atom - is a independent
object. It should appear independent to the client even if behind the scenes
it shares some hardware or software with other objects. This is often the case
with multichannel devices where the user would like to see each channel as a
device but it is obvious that the channels cannot be programmed completely
independently. The logical device is there to hide or make transparent this
fact. If it is impossible to send commands to one device without modifying
another device then a single device should be made out the two devices.

e tailored vs general, one of the philosophies of the DSM is to provide tailored
solutions. For example instead of writing one serial line class which treats
the general case of a serial line device and leaving the device protocol to be
implemented in the client the DSM advocates implementing a device class
which handles the protocol of the device. This way the client only has to
know the commands of the class and not the details of the protocol. Nothing
prevents the device class from using a general purpose serial line class if it
exists of course.

10.5.5 Defining device commands

Each device has a list of commands which can be executed by the Application across
the network or locally. These commands are the Application Programmer’s network
knobs and dials for interacting with the device.

The list of commands to be implemented depends on the capabilities of the hard-
ware, the list of sensible functions which can be executed at a distance and of course
the functionality required by the application. This implies a close collaboration be-
tween the Equipment Responsible, Device Server Programmer and the Application
Programmer.

When drawing up the list of commands particular attention should be paid to the
following points -

e performance, no single command should monopolise the device server for
a long time (a nominal value for long is one second). Commands should be
implemented in such a way that it executes immediately returning with a
response. At best try to keep command execution time down to less than
the typical overhead of an rpc call i.e. 20 milliseconds. This of course is
not always possible e.g. a serial line device could require 100 milliseconds
of protocol exchange. The Device Server Programmer should find the best
trade-off between the users requirements and the devices capabilities. If a

10.5. HOW TO WRITE A DEVICE SERVER 95

command implies a sequence of events which could last for a long time then
implement the sequence of events in another process - don’t block the device
server.

e robustness, should be provided which allow the client to recover from error
conditions and or do a warm startup.

The command names should be drawn up by the Device Server Programmer and
the Device Server Source Custodian. All commands are presently stored in a single
header file (DevCmds.h) and therefore the names have to be chosen so that there
is no name clash and that they fit in with the naming convention used. It is often
possible to reuse existing commands for new devices. The argument types which
need to be passed for the commands should also be discussed with the Device Server
Source Custodian. He can give advice where necessary on what types can be used
how.

The list of device commands should be written and discussed with the Equipment
Responsible and the Applications Programmer before any coding is started. The
commands list should be used as the basis for the Device Servers User Guide, a
document which has to exist for each device server. Don’t forget documentation is
part of the design and as such should be finished before the program.

The commands and the types they use are defined in the header of the class .c file.
Here is an example of the commands defined for the AGPowerSupplyClass -

static DevCommandListEntry commands_list[] = {

{Dev0ff, dev_off, D_VOID_TYPE, D_VOID_TYPE},

{Dev0n, dev_on, D_VOID_TYPE, D_VOID_TYPE},

{DevState, dev_state, D_VOID_TYPE, D_SHORT_TYPE},
{DevSetValue, dev_setvalue, D_FLOAT_TYPE, D_VOID_TYPE},
{DevReadValue, dev_readvalue, D_VOID_TYPE, D_FLOAT_READPOINT},
{DevReset, dev_reset, D_VOID_TYPE, D_VOID_TYPE},

{DevStatus, dev_status, D_VOID_TYPE, D_STRING_TYPE},
{DevError, dev_error, D_VOID_TYPE, D_VOID_TYPE},

{DevLocal, dev_local, D_VOID_TYPE, D_VOID_TYPE},

{DevRemote, dev_remote, D_VOID_TYPE, D_VOID_TYPE},

{DevUpdate, dev_update, D_VOID_TYPE, D_STATE_FLOAT_READPOINT},
};

static long n_commands = sizeof (commands_list)/sizeof (DevCommandListEntry);

Standard commands

A minimum set of standard commands should exist for all devices. These are the
commands -

e DevState - returns the state of the device as a long integer.

e DevStatus - the state and any additional useful information of the device as
a formatted ascii string (in English).

Examples of these commands for the AGPowerSupplyClass are -

/

Function: static long dev_state()
Description: return state of simulated power supply.

Arg(s) In: AGPowerSupply ps - object on which to execute command.

96 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

DevVoid *argin - void.

Arg(s) Out: DevShort *argout - state returned as short integer
long *error - pointer to error code (in case routine fails)
x/
static long dev_state (ps, argin, argout, error)
AGPowerSupply ps;
DevVoid *argin;
DevShort *argout;
long *error;
{
/* this command can be always executed independent of the state */
*argout = ps->devserver.state;
return (DS_OK) ;
X
/
Function: static long dev_status()
Description: Return the state as an ASCII string. Interprets the error
flag as well if the status is FAULT.
Arg(s) In: AGPowerSupply ps - object on which to execute command.
DevVoid *argin - void.
Arg(s) Out: DevString *argout - status is returned as a string.
long *error - pointer to error code (in the case of failure)
*/

static long dev_status (ps, argin, argout, error)
AGPowerSupply ps;
DevVoid *argin;
DevString *argout;
long *error;
{
static char mess[1024];
int fault = ps->powersupply.fault_val;
long p_state;

p_state = ps—->devserver.state;

switch (p_state) {

case (DEVOFF) : sprintf (mess,"}s","0ff");
break;

case (DEVON) : sprintf(mess,"%s","On");
break;

10.5. HOW TO WRITE A DEVICE SERVER

case (DEVLOCAL) : sprintf (mess,"%s","Local");
break;

case (DEVFAULT) : sprintf (mess,"%s","Fault\n");
break;

default : sprintf(mess,"%s","Unknown");
break;

}

/* translate fault into a string */

if ((fault !'= 0) && (p_state == DEVFAULT))

if ((fault & AG_OVERTEMP) != 0)
¢ sprintf (mess+strlen(mess)," %s","Overtemp");
if ((fault & AG_NO_WATER) !'= 0)
¢ sprintf (mess+strlen(mess)," %s","No Cooling");
if ((fault & AG_CROWBAR) !'= 0)
¢ sprintf (mess+strlen(mess)," %s","Crowbar");
1f ((fault & AG_RIPPLE) != 0)
' sprintf (mess+strlen(mess)," %s","Ripple");
L ((fault & AG_MAINS) != 0)
{
sprintf (mess+strlen(mess)," %s","Mains");
1f ((fault & AG_LODAD) != 0)
¢ sprintf (mess+strlen(mess)," %s","Load");
if ((fault & AG_TRANSFORMER) != 0)
¢ sprintf (mess+strlen(mess)," %s","Transformer");
if ((fault & AG_THYRISTOR) != 0)
¢ sprintf (mess+strlen(mess)," %s","Thyristor");
}
}

*argout = mess;

return(DS_0K) ;

98 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

Standard commands ensure uniform behaviour of all devices and allow standard
utilities to be used for interrogating and displaying device status to be developed.
Subsets of standard commands exist for devices belonging to the same superclass.
For example all powersupplies should implement the same minimum set of com-
mands. The reader is referred to the Device Server Notes for a description of the
major superclasses.

New commands

Where a device requires new commands to be defined because they don’t exist in the
list of standard commands they should be defined in the public .h file. A scheme has
been proposed on how these commands should be defined (cf. F.Epaud DSN/???).
As soon as it is adopted it will be included here. Basically it consists of dividing the
32 bit long word for commands into sub-fields and then reserving certain sub-fields
for certain classes/groups.

10.5.6 Command data types

All commands have one input parameter and one output parameter. In theory
parameter types can be any C type i.e. simple types or composite types represented
by a structure. All parameters are passed by pointer. This is to ensure efficiency
and homogeneity. Parameters have a sense of direction. For input parameters the
memory required is allocated by the calling function (the rpc routine in the case
of a remote client). For output parameters the memory occupied by the parameter
has to be allocated by the command itself. This should be done in static storage
so that the space is not deallocated on exiting the command. See the example for
the dev_status() command for the AGPowerSupplyClass above.

All data types supported by the device servers require conversion routines for se-
rialising and deserialising data from local format to network format (XDR. for-
mat). For this reason in practice only a subset of data types are supported. The
list of supported types can be found in xdr_typelist.h and in the related xdr.h
files.

All basic C types and also variable arrays thereof exist. Programmers should try
as much as possible to restrict themselves to only these types. This reduces the
number of data types which have to be supported and makes it easier to interface
device servers to other software packages. These basic types are -

e typedef void DevVoid; D_-VOID_TYPE,

typedef char DevChar; D_.CHAR_TYPE,

e typedef boolean DevBoolean; D_.BOOLEAN_TYPE,

e typedef short DevShort; D_.SHORT _TYPE,

e typedef long DevLong; D_ LONG_TYPE,

e typedef float DevFloat; D_.FLOAT_TYPE,

e typedef double DevDouble; D_.DOUBLE_TYPE,

e typedef char *DevString; D_.STRING_TYPE,

o typedef struct {short length; char *sequence} DevVarCharArray; D_.VAR_CHARARR,

o typedef struct {short length; short *sequence} DevVarShortArray; D_-VAR_SHORTARR,
o typedef struct {short length; long *sequence} DevVarLongArray; D_-VAR_LONGARR,

10.5. HOW TO WRITE A DEVICE SERVER 99

o typedef struct {short length; float *sequence} DevVarFloatArray; D_-VAR_FLOATARR

Normally it is possible to format all command parameters into one of the above
types. In the special cases where a new type is required the device server program-
mer should develop the XDR conversion routine and add it to the library of XDR
routines.

When using variable length data types don’t forget that network transfers are re-
stricted to 8 kbytes for UDP/IP protocol exchanges. If it is necessary to transfer
more data then use TCP/IP. The switching between the two protocols occurs on
the client side.

Presently all known data type conversion routines are linked with every device
server. This is not at all efficient and wastes quite a lot of memory. In the future
(summer 1993) a scheme will be introduced where only the basic types will be linked
with each server and/or client and any additional types will require including an
include file which contains the type definitions.

10.5.7 Designing

Device servers (like all software) needs to be designed. Some device servers are
very simple and do not need an elaborate design. Others device servers are more
complicated e.g. multiple processes which communicate with each other, and there-
fore need a more detailed design. Whatever the case is every device server needs a
design.

The design can be in terms of a simple description (if the device server is simple)
or it can consist of data flow diagrams and algorithms. The design should be
documented in a computer readable form and this documentation stored with the
device server source.

When designing a device server account should be taken of the DSM. The device
server is primarily there to accept and execute commands from the network. It
spends most of its time waiting for commands or clients to connect on the network
and then to serve these requests. Because only one process exists per device server
if the device server spends a lot of time doing something else all connections to it
(and thereby all devices served by it) are blocked. In severe cases this can cause
clients to timeout. Consequently the device server should not spend a lot of time
executing any one command. All commands should be executed immediately so
that the device server can go back to servicing the same or other clients.

Where the device server is required to treat other events which might be time
consuming or require their own polling it is best to consider using a multi-process
solution. Time consuming commands should be relegated to independent processes
which do not block the device server. The capabilities of the operating system
should be used to communicate between the device server and its coprocesses. Most
operating systems offer an adequate range of possibilities for synchronising and
communicating between process (for example shared memory, events, signals fifos
etc.). Although the DSM constrains the programmer to a single event loop within
the device server it does not prevent the device server from using the operating
system to its fullest. Refer to the section on Advanced programming techniques
(later on) and to the Device Server Notes for solutions already in use by existing
device servers.

10.5.8 Documentation

Every device server has to be documented. The documentation should be viewed
as part of the design and should therefore be written before the code.
The following documents should exist for each device server

100 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

e A Device Server Users Guide (DSUG) for the Applications Programmer.
This guide is the Application Programmers interface and "how-to” manual
for the device server. It should contain amongst other things a description of
the device, the commands implemented for the device and how to implement
complete sequences in an application. Refer to DSN /067 for the format and
a fuller description of a standard DSUG. A template exists for a standard
DSUG.

e A Class Manual Page describing the device’s class. This is intended for
other Device Server Programmers who want to use the class locally in their
programs. Refer to DSN /059 for what should go into a typical class manual
page. A template exists of a standard manual page.

e A Design Document which describes the design used for the device server.
In simple cases plain text (English please) will suffice. For more complicated
(especially multiprocess) designs it is recommended to include diagrams and
algorithms explaining the design.

10.5.9 Coding

Coding should only be started once the above tasks have been completed or a first
version thereof at least. Coding should be done, where possible, in ANSI C. All
functionalities of the ANSI C compiler which improve the reliability of programs
should be used, for example function prototyping.

Coding is best done using the automatic class generator written by Laurent
Claustre (1992). Two versions of this exist (1) an ascii version (classgen) which
requires file input, and (2) a Motif/X11 based version (xclassgen) which uses a
graphic interface. Consult the user’s manual for the class generator for details on
how to use it.

It is also possible to take an existing class and use it as the starting point for a
new device class. A global edit can very quickly turn an existing class into the
beginnings of a new class.

10.5.10 Debugging

Debugging should be configurable i.e. turned ON and OFF. Use the C precompiler
conditional statements, printf’s and the debugging functions implemented in the
standard device server api library. One precompiler option which should always
be used is DS_DEBUG. This can be used to print general information about the
device and/or class. New classes which require special debugging options should
add them as they need e.g. SL_LDEBUG for serial line debugging.

Symbolic debuggers exist on all platforms and can be used to assist the debugging
process. Debugging options should be described in the Design Documentation.

It is useful to always have a debugging version of each class always ready so that in
the case of doubt or problems this version can be loaded and used to identify the
problem(s).

10.5.11 Testing

Each device server has to be tested. Therefore a test program has to exist for each
device server. The standard test programs for device servers are client menu pro-
grams. The menu programs should allow the user to execute any of the commands
implemented in the device class.

Here is an example of menu program for the AGPowerSupplyClass -

10.5. HOW TO WRITE A DEVICE SERVER 101

/***

File: ps_menu.c
Project: Device Servers
Description: Code for a menu driven test program for AGPowerSupplies.

Allows each command to be executed on a given device.
Device name is specified on the command line.

Author(s) ; A. Goetz
Original: March 1991

$Log: ps_menu.c.tex,v $
Revision 1.1 93/04/05 18:16:41 18:16:41 goetz (Andy Goetz)
Initial revision

* Revision 1.1 91/05/02 08:25:31 08:25:31 goetz (Andy Goetz)
* Initial revision
*

Copyright (c) 1991 by European Synchrotron Radiation Facility,
Grenoble, France

***/

#include <API.h>
#include <DevServer.h>

/*
* include AGPowerSupply public file to get DevRemote command definition
*/

#include <AGPowerSupply.h>

main(argc,argv)
unsigned int argc;
char **argv;

{

devserver ps;

DevArg arg;

long readwrite = 0, error;

int cmd, status, nave, chan;

float setcurrent, setvoltage;
DevFloatReadPoint readcurrent, readvoltage;
DevStateFloatReadPoint statereadpoint;
short devstatus;

char *ch_ptr,cmd_string[256];

if (argec < 2)

102

/*

CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

printf ("usage: %s device-name\n",argv[0]);
exit(1);

status = dev_import(argv[1],readwrite,&ps,&error);
printf ("dev_import(%s) returned %d\n",argv[1],status);

if (status != 0) exit(1);

while (1)

{

printf("Select one of the following commands : \n\n");
printf ("0. Quit\n\n");

printf("1. On 2. 0ff 3. State\n");
printf("4. Status 5. Set 6. Read\n");
printf ("7. Update 8. Local 9. Remote\n");
printf ("10.Error 11.Reset\n\n");

printf("cmd 7 ");

* to get around the strange effects of scanf() wait for something read

*/

for(; gets(cmd_string) == (char *)0 ;);
status = sscanf(cmd_string,"%d",&cmd) ;

switch (cmd) {

case (1) : status = dev_putget(ps,DevOn,NULL,D_VOID_TYPE,NULL,
D_VOID_TYPE,&error) ;
printf ("\nDevOn dev_put() returned %d\n",status);
if (status < 0) dev_perror (NULL);
break;

case (2) : status = dev_putget(ps,Dev0ff,NULL,D_VOID_TYPE,NULL,
D_VOID_TYPE,&error) ;
printf ("\nDev0Off dev_put() returned %d\n",status);
if (status < 0) dev_perror (NULL);
break;

case (3) : status = dev_putget(ps,DevState,NULL,D_VOID_TYPE,
&devstatus,D_SHORT_TYPE, &error) ;
printf ("\nDevState dev_putget() returned %d\n ",status);
if (status == 0)

{

printf ("status read %d , %s \n",devstatus,DEVSTATES[devstatus]);
}
break;

case (4) : status = dev_putget(ps,DevStatus,NULL,D_VOID_TYPE,
&ch_ptr ,D_STRING_TYPE,&error) ;
printf ("\nDevStatus dev_putget() returned %d\n ",status);
if (status == 0)

10.5. HOW TO WRITE A DEVICE SERVER 103

{

printf (" %s \n ",ch_ptr);
}
break;

case (9) : status = dev_put(ps,DevRemote,NULL,D_VOID_TYPE,&error);
printf ("\nDevRemote dev_put() returned %d\n",status);
if (status < 0) dev_perror (NULL);
break;

case (5) : printf("set current to 7 ");
for(; gets(cmd_string) == (char *)0 ;);
sscanf (cmd_string,"%f,",&setcurrent) ;
status = dev_putget(ps,DevSetValue,&setcurrent,D_FLOAT_TYPE,NULL,NULL, &e:
printf ("\nDevSetValue dev_putget() returned %d, ",status);
printf ("current should be set to %6.2f amps\n",setcurrent);
if (status < 0) dev_perror (NULL);
break;

case (6) : status = dev_putget (ps,DevReadValue,NULL,D_VOID_TYPE,
&readcurrent ,D_FLOAT_READPOINT,&error) ;
printf ("\nDevReadValue dev_putget() returned %d, ",status);
printf ("current set to %6.3f read %6.3f\n",readcurrent.set,
readcurrent.read) ;
if (status < 0) dev_perror (NULL);
break;

case (11) : status = dev_put(ps,DevReset,NULL,D_VOID_TYPE,&error);
printf ("\nDevReset dev_put() returned %d\n",status);
if (status < 0) dev_perror(NULL);
break;

case (10) : status = dev_put(ps,DevError,NULL,D_VOID_TYPE,&error);
printf ("\nDevError dev_put() returned %d\n",status);
if (status < 0) dev_perror(NULL);
break;

case (8) : status = dev_put(ps,Devlocal,NULL,D_VOID_TYPE,&error);
printf ("\nDevLocal dev_put() returned %d\n",status);
if (status < 0) dev_perror (NULL);
break;

case (7) : status = dev_putget(ps,DevUpdate,NULL,D_VOID_TYPE,
&statereadpoint,D_STATE_FLOAT_READPOINT,&error);
printf ("\nDevUpdate devputget() returned %d (error %d)\n",status,error)
if (status >= 0)
{
printf ("status read %d , %s \n",statereadpoint.state,DEVSTATES[stater
printf ("current set to 7%6.3f read %6.3f\n",statereadpoint.set,
statereadpoint.read) ;
}

break;

104 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

case (12) : dev_free(ps,&error);
exit (0);

default : break;
}

}
Which provides the user with the following menu -

$ ps_menu tl1/ps-d/d
dev_import() returned 0
Select one of the following commands :

0. Quit

1. On 2. DOff 3. State
4. Status 5. Set 6. Read
7. Update 8. Local 9. Remote
10.Error 11.Reset

cmd ?

10.5.12 Database support

One of the requirements of the device servers is that they be database driven. No
constants which could change during the lifetime of the device server should be
hardwired into the program. All weak constants plus any parameters and variables
should be configurable from a socalled resource file. The resource file is a standard
feature of the DSM. It is an ascii file with a flat structure where resources (basic
C types) can be stored according to class names or device names. A Database api
exists for retrieving resources from the database, refer to DSN/046.

An example of using the resource database can be found above under the object
initialise section.

10.5.13 State machine

Each device class must have a state machine implemented in the state_handler
method. It is called by the command_handler to determine whether the requested
command can be executed or not. If the state_handler returns a non-zero status
then the command is not executed.

For very simple devices the state_handler has very little to do - any command can
be executed at anytime. For other more complicated devices the state_handler is
used to reflect the internal state of the device.

All devices must however use the state_handler to control access to the device.
It should be used to reflect the availability of the device. Any device (even the
simplest) should support the following two states

¢ DEVON or an equivalent state to indicate that the device is ready to receive
commands.

e DEVFAULT to indicate that a fault has been detected and the device needs
attention, if the fault has been solved a DevReset command should return
the device back to a non fault, standard configuration. A fault can also arise
when the device hardware has been disconnected.

10.5. HOW TO WRITE A DEVICE SERVER 105

An example state machine for the AGPowerSupplyClass is given below, it imple-
ments the state diagram depicted in figure ?? -

/
Function: static long state_handler()
Description: Check if the command to be executed does not violate
the present state of the device.
Arg(s) In: AGPowerSupply ps - device to execute command to.
DevCommand cmd - command to be executed.
Arg(s) Out: long *error - pointer to error code (in case of failure).

*/

static long state_handler(ps, cmd, error)
AGPowerSupply ps;

DevCommand cmd;

long *error;

{
long iret = DS_OK;
long int p_state, n_state;
p-state = ps->devserver.state;
/*
* before checking out the state machine assume that the state
* doesn’t change i.e. new state == old state
*/

n_state = p_state;
switch (p_state) {
case (DEVOFF)

{

switch (cmd) {

case (DevOn) : n_state = DEVON;

break;
case (DevError) : n_state = DEVFAULT;
break;
case (DevLocal) : n_state = DEVLOCAL;

break;
/* following commands are ignored in this state */
case (DevSetValue)
case (DevReadValue) : iret = DS_NOTOK;
*error = DevErr_CommandIgnored;

break;

/* default is to allow commands */

106 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

default : break;
}

break;

}
case (DEVON)
{
switch (cmd) {

case (DevDff) : n_state = DEVOFF;

break;
case (DevError) : n_state = DEVFAULT;
break;
case (DevLocal) : n_state = DEVLOCAL;
break;

/* following commands violate the state machine */
case (DevRemote)
case (DevReset) : iret = DS_NOTOK;
(*error) = DevErr_AttemptToViolateStateMachine;
break;

/* default is to allow commands */

default : break;

}

break;
}
case (DEVLOCAL)
{

switch (cmd) {

case (DevRemote) : n_state = DEVOFF;
break;

/* the following commands violate the state machine */

case (DevOn)

case (DevOff)

case (DevRun)

case (DevReset)

case (DevStandby)

case (DevError) : iret = DS_NOTOK;
(*error) = DevErr_AttemptToViolateStateMachine;
break;

/* following commands are ignored */
case (DevSetValue) : iret = DS_NOTOK;
*error = DevErr_CommandIgnored;
break;

10.5. HOW TO WRITE A DEVICE SERVER 107

/* default is to allow commands */

default : break;

}

break;
}
case (DEVFAULT)
{

switch (cmd) {

case (DevReset) : n_state = DEVOFF;
break;

/* the following commands violate the state machine */

case (DevOff)

case (DevRemote)

case (DevOn)

case (DevLocal) : iret = DS_NOTOK;
(*error) = DevErr_AttemptToViolateStateMachine;
break;

/* following commands are ignored */

case (DevSetValue)

case (DevReadValue) : iret = DS_NOTOK;
*error = DevErr_CommandIgnored;
break;

/* default is to allow commands */
default : break;

}
break;

}

default : break;
¥

/*
* update powersupply’s private variable n_state so that other methods
* can use it too.

*/
ps—->devserver.n_state = n_state;

#ifdef DS_DEBUG
printf ("state_handler() : p_state %2d n_state %2d, iret %2d\n",
p_state,n_state, iret);
#endif

108 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

return(iret) ;

}

Sub-classes of the same super-class usually represent similar devices and should
therefore have the same or similar state machine. A diagram (like in fig. ?7)
representing the state machine of each new class should be included as part of the
standard device server documentation.

10.5.14 Errors, Faults and Alarms

Errors, faults and alarms all represent problems of some kind. In the DSM an
attempt is made to distinguish between the three classes of problems. This section
will describe the difference between error, faults and alarms and explain how to
treat them.

e Errors indicate that a command has not been able to be executed to com-
pletion correctly. This can be due to a partial hardware failure, an incorrect
parameter or a bad configuration. Errors are the least serious of the three
problem types which have been defined. They should be signalled to the
client and can be treated or corrected by the client. They do not require any
privileged intervention from abovei.e. operator or device server administrator.

Errors in command execution should be indicated by the status DS_NOTOK
being returned.

e Faults indicate a serious failure of the hardware which needs to be signalled
to the operator. The device should change its state to DEVFAULT and
should not permit further commands until the cause of the fault (bad or
missing hardware for example) has been remedied. The fault mode requires
execution of a special command (normally DevReset) to put the device back
in an operational state.

Faults in the device which prevent a command from being executed should be
signalled by the status DS_NOTOK being returned.

e Alarms indicate faults which can endanger personal or equipment safety.
They are context dependent and should therefore be treated by a dedicated
application. Alarms should not be treated inside the device servers because
(1) the device servers are not aware of the context in which they are used, and
(2) device servers are “dumb” and not supposed to be polling devices eternally
nor waiting for interrupts.

Commands should be provided for recovering from any of the above conditions.
It should be possible to bring the device back into a usable state (as far as the
hardware permits of course).

10.5.15 Device server startup

In C all programs have a main() function. It is the first function called at runtime.
This is no different for device servers. However because device servers spend most
of their lives sleeping waiting for clients to access them (in an NFS/RPC routine
called rwait ()) the main has to be implemented in a special manner. Rather than
providing the user with the source code for the device server main the programmer
is given an entry point, the startup() routine, which will be called by the common
main.

10.5. HOW TO WRITE A DEVICE SERVER 109

DevL ocq

110

CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

The startup() has the job of creating all devices of a given class and exporting
them onto the network. It can also be used to do global initialisation or other
non-standard actions like exporting sub-objects. The startup should return a long
status which indicates whether the startup has worked or not. A non-zero status
will be interpreted as a failure and the main will do an exit.

The startup function is called by main() with the following syntax -

long startup(char *svr_name, long *error)

Where svr_name is the personal name referred to below.
An example is the startup for the AGPowerSupplyClass -

/***

File:
Project:

Description:

Author(s);

Original:

startup.c
Device Servers

Startup procedure for AGPowerSupplyClass. The
startup procedure is the first procedure called
from main() when the device server starts up.

All toplevel devices to be created for the device
server should be done in startup(). The startup
should make use of the database to determine which
devices it should create. Initialisation of devices
is normally done from startup().

A. Goetz

March 1991

$Log: startup.c.tex,v $
Revision 1.2 93/04/05 18:16:44 18:16:44 goetz (Andy Goetz)
x* empty log message *

Copyright (c) 1990 by European Synchrotron Radiation Facility,

Grenoble, France

***/

#include <Admin.h>

#include <API.h>

#include <DevServer.h>

#include <DevErrors.h>
#include <DevServerP.h>
#include <AGPowerSupplyP.h>
#include <AGPowerSupply.h>

/***************************/

/* AG PowerSupply startup */
/e kokke ks sk ko ko sk ko sk ko sk sk ok ok ok ok ok /

10.5. HOW TO WRITE A DEVICE SERVER 111

long startup(svr_name, error)
char *svr_name;
long *error;

{
AGPowerSupply ps_list[MAX_NO_OF_DEVICES];
int i,status;
/*
* pointer to list of devices returned by database.
*/
char **dev_list;
int dev_no;
if (db_getdevlist(svr_name,&dev_list,&dev_no,error))
{
printf ("startup(): db_getdevlist() failed, error %d\n",*error);
break;
}
else
{
printf("following devices found in static database \n\n");
for (i=0;i<dev_no;i++)
{
printf ("%s\n",dev_list[i]);
}
}
/*

* create, initialise and export all devices served by this server

*/

for (i=0; i < dev_no; i++)

{
if (ds__create(dev_list[i], aGPowerSupplyClass, &(ps_list[i]),error) != 0)
{
break;
}
/*
* initialise the newly created powersupply
*/
if (ds__method_finder(ps_list[i],DevMethodInitialise) (ps_list[i],error) != 0)
{
break;
}
/*
* now export it to the outside world
*/
printf("created %s, going to export it\n",dev_list[i]);
if (dev_export(dev_list[i],ps_list[i],error) != 0)
{

break;

112 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

}
printf ("export worked !'\n");

}

printf("left startup and all’s OK\n");
return(DS_0K) ;

Retrieving a list of device names

At startup time the device server needs to know which devices it should create and
export onto the network. This is done with the use of the static database and
the device server’s personal name. Each device server is started with at least
one parameter - the personal name. The personal name is an ascii string which is
used to identify device server in the database. The list of devices which should be
created by a device server are stored in the static database as a resource with a
special resource name device and attached to the device server executable name
and its personal name. An example from the ESRF Transfer Line one demonstrates
the principle -

AGPSds/TL1/device: TL1/PS-D/D

The above resource attaches the device TL1/PS-D/D to the device server AGPSds
which is started with the personal name TL1.

It is the job to the device server to retrieve the list of device names from the
resource database using the database function db_getdevlist(). The syntax for
db_getdevlist is -

db_getdevlist(char *svr_name,char ***dev_list,long *n_devices,long *error)

This call returns a list of device names which the startup can then create and
initialise.

Exporting devices on the network

Once a list of devices have been created and initialised they can be exported onto
the network to be exported by clients who want to execute commands on them. Not
all created devices are necessarily exported onto the network. Sometimes devices
are created in the startup for internal use and never exported onto the network.
To export devices onto the network their are two possibilities - (1) calling the
DevMethodDevExport directly with the method finder, or (2) using the convenience
function dev_export() which calls the method finder. It is possible to export a
device onto the network with a different name to its device name. This option is
reserved for perverse device server programmers. For a device to be exportable it
has to appear somewhere in a list of devices in the resource database (cf. above
example).

10.5.16 Advanced programming techniques

The basic techniques for writing device classes and device servers are required by
each device server programmer. In certain situations it is however necessary to do
things out of the ordinary. For example simple device servers spend all their time in
a wait loop waiting for commands across the network. A device server might need
to do other things in addition to waiting for commands from clients. This section
will look into programming techniques which permit the device server serve more
than simply the network.

10.5. HOW TO WRITE A DEVICE SERVER 113

Receiving signals

It is possible for device servers to receive signals from drivers or other processes
even while in the main wait loop. The DSM supports signals via a single unified
call ds__signal(). This call has the same syntax on all operating systems (even
089) and has been modelled on the Posix call signal().

ds__signal has the following syntax -

long ds__signal (int signo, void (*action)(), long *error);

This call is used to register a function action for the signal signo. As soon as the
device server receives a signal, it checks to see whether an action has been registered
under this signal number and then calls it. Only one action can be registered per
signal.

Signals allow the device server to set up asynchronous actions (e.g. timers) during
execution of a command and return control to the client. On receipt of the signal
(at a later time) the device server can then take appropriate action.

ds__signal() is the only to register actions with signals for device servers. This is
because the device server has to exit gracefully and is always programmed for the
signal SIGTERM. On receipt of the signal SIGTERM the device server will first
check to see whether the class has registered its interest for this signal. If so it will
call the corresponding function. After that it will exit gracefully by unregistering
the device server from the static database.

For more information see the manual page ds__signal.

Time sharing

It is sometimes necessary for the device server to only serve the network i.e. com-
mands coming from clients, only a part of its time. Instead of spending all its time
in a wait loop waiting for commands it is possible for the device server to poll the
network at regular intervals to see if there are any commands to be executed. The
call which allows this is ds__svcrun().

The calling syntax is -

long ds__svcrun (long *error);

ds__sverun will check all open sockets to see if there are any commands waiting to
be executed and will then execute the next command. If there are no commands
waiting the function will timeout after 10 ms (1 sec for OS9 !).

Multi-processing

Sometimes the fact that device servers are “dumb” beasts which sleep most of the
time is too limiting for the performance requirements or other requirements de-
manded of the device server. It is also sometimes not possible to satisfy the re-
quirements of the device server by using a classic design (mono-process) and the
two calls described above. In cases like this it is no problem to implement the
device server using multiple processes. One process, the device server proper, will
be dedicated to dealing with client requests while the other process(es) can be ded-
icated to other tasks e.g. data taking, monitoring etc. To communicate between
the processes shared memory is normally used. A library of basic calls exist for
creating and synchronising processes via shared memory called the dataport (see
D.Carron, 1993). Two process device servers are supported in a standard way by
the class generator.

114 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

10.6 Using Classes

The Objects in C model used in device servers supports and even forces Device
Server Programmers to write classes. Programming with classes is becoming more
common nowadays and many articles can be found on Object Oriented Program-
ming in the literature. Refer to the bibliography listed at the end of this manual for
further reading. Although a general philosophy of Object Oriented Programming
exists (cf. Yourdon, 1991) the exact technique varies with the implementation.
This section will describe some basic philosophy and techniques for implementing
classes, subclasses and superclasses in OIC.

10.6.1 classes

The technique of implementing a class has already been treated extensively in this
paper eg. contents of include files, source files etc. Nonetheless there are some
techniques which are useful when implementing classes which belong to the ”art
of good (device server) class programming” which have not been touched upon yet.
The topic of this subsection is to treat these more esoteric techniques.

Classes programming represents a new approach to programming. Until recently
the approach to programming was to use traditional languages (e.g. FORTRAN,
PASCAL or C) to break down the problem into smaller problems. These smaller
problems were then solved and coded up to produce libraries of subroutines, blocks
or functions depending on the language used. Programs based on these functions
consisted of a series of calls to the function (to use the C paradigm) implemented
in the library(ies).

Classes represent a new approach to programming. A class can be best viewed as
a generic description and solution for a particular problem. The art of good class
programming is to find the description which best describes the problem. Instead
of breaking down the problem into subproblems the problem is broken down into
subclasses i.e. shorter descriptions, until eventually one arrives at an ensemble of
generic descriptions which by taking specific instances of these descriptions will
behave in such a way that they solve the particular problem.

Identifying which classes need to be implemented is not only an attempt at provid-
ing a generic description of a solution to a problem or task but also a hierarchical
description of the solution. Programming classes are very closely modelled on bio-
logical classes. In this respect a class can be a member of other classes. However
it is rarely an equal member. A designer of classes tries to organise her classes in
order of rank. Some classes are more general than other classes. At the top of
the hierarchy one finds a root class. This root classes contains a description of the
characteristics and behaviour which are common to all members or sub-members
of that class. The set of classes which constitute the solution cannot be defined by
a single class. There will always be characteristics and behaviour patterns which
are specific to only certain members. Therefore instead of having a top-heavy solu-
tion new classes are defined which inherit all or part of what is defined in the root
class and then add what is new i.e. specific to them. These new classes are called
subclasses because they inherit characteristics and behaviour from other (more
generic) classes and because they appear lower within the hierarchical structure. A
class which has subclasses is known as a superclass. An instance of a class which
is used in another class is known as a subobject.

10.6.2 subclasses

In OIC a class can have as many subclasses as it wants. Fach class defines a
hierarchy. A hierarchy is composed of a root class and all subsequent classes up to

10.6. USING CLASSES 115

the final class. Because in OIC each class can only belong to one superclass, class
hierarchies in OIC are one dimensional tree structures (other languages like C++
for example, support multiple inheritance and are therefore two dimensional tree
structures). Figure 3 represents a typical OIC tree structure.

The first step in implementing a subclass is to specify its requirements. Subclasses
are implemented by modifying the definition of the superclass (defined in the super-
classes private include file). A definition is required for the partial object and class
record structures. The partial object record structure contains those variables and
constants which each member of the new class requires a personal copy thereof. The
partial class structure contains those variables and constants which are required for
the implementation of the class and which can be shared by all members of the
class. The classes object and class record structures contain the full description of
the class hierarchy. They are formed by adding the partial object and class record
structures to the object and class record structures respectively of the superclass.
Once the class and object structures of the subclass are defined then the class
behaviour can be implemented in the source file. This means implementing the
minimum methods required by each class (e.g. class_initialise)plus the new methods
which the new subclass requires. If the new subclass will be instantiated then it
will also implement a list of device server commands.

It is necessary that each subclass initialises the root class (DevServerClass) class
structure with at least the superclass pointer (superclass_pointer) in order for OIC
to work. This is done in the DevMethodClassInitialise method implementation.
The classes partial class structure is also initialised in the DevMethodClassInitialise
method.

One very important implementation detail of OIC is that because it is only a pro-
gramming technique and not a compiler a certain amount of redundancy exists
which could confuse the beginner device server programmer. The class record defi-
nition includes the partial class record structures for the root class, all superclasses
and the class itself. Because the superclasses do not know about the subclasses it
is impossible for them to initialise ’their’ partial class structures of each of their
subclasses. Consequently the partial classes structures of the superclasses of a sub-
classes remain uninitialised. This (possibly confusing for beginner programmers)
aspect has been retained in the OIC model for two reasons :

1. to provide better readability of the class record structure definition in the
private include file, and

2. to maintain symmetry with the object record structure definition.

If the class needs to access data in one of its superclasses it should do so by following
the superclasses class_pointer in the root class partial structure and thereby access
the initialised copy of the superclasses partial structure.

The same doesn’t apply to the object record structure however. Each object has
its own private copy of the object record. A subclass can access the data defined in
the superclasses object partial structure directly. All object data is accessible this
way. This is because OIC does not distinguish between private and public data.

10.6.3 superclasses

As mentioned above classes are hierarchically organised generic descriptions. If
a class has subclasses then it is automatically a superclass. Because all device
server classes belong to the root class DevServerClass they are also automatically
subclasses and their implementation is as for any other subclasses. It would be
wrong to treat all subclasses of the root class serve in the same way. Not all
classes are supposed to be instantiated, some classes exist only as superclasses

116 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

for other subclasses. The best example of this is the root class DevServerClass.
There are other examples (e.g. the PowerSupplyClass). The philosophy behind
these superclasses is different from classes which occur only as subclasses of other
classes and never as superclasses.

The idea behind a superclass is to abstract out what is common to a number of
subclasses and implement this in a single class. This has the advantage of having
only a single source to maintain. It also enforces reusability of code. Superclasses
can be thought of as abstract classes which serve as place holders for data and a
single common source for code. They are essential for implementing classes i.e.
hierarchically organised generic descriptions.

Experience with class programming has shown that it is not a good idea to have too
many levels of hierarchy. Nesting classes too deeply (i.e. more than five superclasses)
is difficult to follow and dissuades programmers from reusing existing superclasses.
The ideal level of nesting is three or in rare cases four levels of class hierarchy.
Keep class hierarchies simple. It is more efficient to opt for a flat class structure with
many toplevel classes than to go for heavily nested classes. Reusing existing classes
implies reusing them as objects rather than as superclasses i.e. as subobjects.

10.6.4 subobjects

The most common way of reusing existing classes in new classes is to instantiate
members of the existing classes in the new class. The instantiated member is referred
to as a subobject. The object has to be created in the object_create method of the
new class. The object exists locally as a subobject of the new object. This means
commands and methods can be executed on the subobject. Thereby allowing the
new class to profit from the existing classes implementation without knowing any
of the details of implementation.

To execute commands locally use the convenience function dev_cmd (). Syntax for
dev_cmd is -

long dev_cmd (short cmd, DevArgument *argin_ptr, DevType in_type,
DevArgument *argout_ptr, DevType out_type, long *error);

It is also possible to use remote devices as subobjects in a class by importing them
(as opposed to creating them locally). This has the advantage that a new class
can use existing classes across the network i.e. it is not obliged to be on the same
physical machine as the imported device. It has the disadvantage that executing
commands on the remote device takes longer because of the network overhead.
Another disadvantage of this method is that methods cannot be executed remotely.
Nonetheless it can be very useful sometimes to import devices in classes and it is
done quite often.

10.7 Discussion

Up to now this manual has presented the device server model and how to use the
Objects In C programming method to write new device servers. There remain a
number of topics which have not been treated however. In particular the questions
of device server programmers when first confronted with the task of writing device
classes.

This section will treat some of the most Frequently Asked Questions which device
server programmers pose. It will also include a discussion on the limitations of the
present device server programming model and improvements which need to be made
to the present method of writing device server classes.

10.7. DISCUSSION 117

10.7.1 Frequently Asked Questions

1. What is the difference between a device server and a device class ?

A device server is a single process which instantiates and exports object(s) of
one or more classes. Once the object(s) have been exported the process waits
for requests on the network to execute commands.

A device class is a software class which implements the generic behaviour and
characteristics of a logical device. It is implemented in C using a method
called Objects In C.

2. Can device servers still be used to solve problems where fast timing is a critical
issue ?

This question demonstrates a misunderstanding of the work of a Device Server
Programmer. Device Server Programmers are writing software classes which
describe and implement device access. These classes can be used by other
classes or in conventional procedure base software. A device server (i.e. the
process which serves a or many devices) is simply a way of packaging these
classes into a process which provides a procedural interface on the network.
If network access is requested and if timing is a problem subclasses can be
combined in superclasses in such a way that all critical timing takes place
within a single class (i.e. locally in one process), thereby removing the network
access part from the critical path. Alternatively the critical code can be
implemented in an independent processes and device server can be used to
provide network access.

The DSM in no way prevents the programmer from using the operating system
to its fullest - in theory it is possible to achieve the same response with a device
server as with any other local process running under OS9 or Unix.

3. What is the difference between a method and a command ?

A method is a special function implemented in a class in the OIC program-
ming methodology which can be inherited by subclasses of that class.

A command is a special function in the DSM which can be executed across
the network using the device server api call dev_putget(). All commands
have a fixed calling syntax. Commands as opposed to methods cannot be
inherited by subclasses. The only way to inherit a command to a subclass is
to implement it as a method.

4. Are device servers complicated to implement ?

A device server is only as complex as the device it has to implement and serve.
The advantage of the DSM is that all common functions related to network
access are standardised. What might appear complicated to beginners is the
object oriented aspect of class programming. The advantages of class pro-
gramming (e.g. hierarchical structuring, generic solutions, re-using code) are
sufficient however that it is worth investing the time in learning how to write
classes.

Device servers should mot be used as an excuse not to write complex but
maintainable software.

5. Do device servers replace replace device drivers ?

The answer is NO. In an ideal world both should exist. A device driver should
be written to access the physical hardware by exploiting up to a maximum
the I/O channels of the operating system. For example fast queued access
with arbitration is offered by OS9 for drivers. A device server takes over from

118 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

where the device driver leaves off. It offers higher level functions and network
access. Although sometimes compared to a networked version of a device
driver it is at a much higher level in terms of the way it presents information
and the commands it offers.

10.7.2 Limitations

One of the limitations to the DSM is the OIC methodology. The adoption of
the OIC programming method was decided on because of the desire to have a
programming environment which supports object oriented programming under an
operating system ((0S9) for which no commercially available and viable Object
Oriented Language could be found. It is a limitation because it is home-brewed (at
the ESRF) and is unknown. It is not a language and therefore consists of 10 percent
code and 90 percent discipline. Paradoxically OIC is also one of the strengths of the
DSM. It is a strength because it is portable and Operating System independent. It
is implemented in C and therefore completely compatible with the existing Unix-like
programming environment. It is easy for programmer’s proficient in C to use OIC.
This is not necessarily the case for C++ for example which requires programmers
to be proficient in C and C++.

Another limitation of the DSM is the lack of multiple inheritance. Multiple
inheritance is the ability of a class to be derived from multiple superclasses at the
same level. This limitation is due to the use of OIC. It can be partially overcome
by using multiple superclasses arranged hierarchically but will only be completely
overcome by either adding multiple inheritance to OIC or by implementing the DSM
in an OOP language which supports multiple inheritance.

Timing is another area in the DSM which is treated in a limited way. A device server
spends most of its time waiting for client requests. When a request is received it
is executed completely i.e. synchronously, before the server goes back to waiting
for client requests. The server by definition has only one thread of execution. If
a server wants to communicate with other processes it has to use the mechanisms
offered by the operating system or some of the advanced calls developed as part
of the device server library (see Advanced programming techniques above). Timing
has to be taking into account when designing device classes.

10.7.3 Improvements

One of the major advances in the DSM would be to implement it in a ’real’ Object
Oriented Language, for example in C++. This way the compiler implements the
Object Oriented-ness and the programmer can concentrate on the class implemen-
tation. Implementing device servers in C++ would have the advantage of adopting
a de facto standard as compared to the OIC programming method (which even
if derived from the MIT Widgets model exists only at the ESRF and is poorly
documented compared to C++).

Other improvements which are planned are in the device server api. An asyn-
chronous dev_putget will be added to complement the existing synchronous call.
The asynchronous call be compatible with main event loop in X11/Motif applica-
tions. A second improvement to the api is the addition of a reliable protocol based
on UDP/IP. To date only UDP/IP and TCP/IP are supported. The former is con-
nectionless but not reliable while the latter is connection oriented and reliable. The
aim is to add a third protocol which is connectionless but reliable i.e. based on
UDP/IP. These improvements are planned for the summer of 1993.

10.8. CONCLUSION 119

10.8 Conclusion

This manual describes how to write a device server. Device servers vary enormously
in their complexity and it is difficult without writing a thesis on the topic to treat
all the possibilities of device servers in a single document. It is hoped however that
the manual describes sufficiently the process of writing device server that beginners
can start being effective quite soon after reading this manual. The best way to start
is to actually write a device class and then encapsulate it in a server. To do this all
that is necessary is a device, this manual and the class generator. Once the basics
of device server writing have been grasped the programmer will see how simple the
entire process is actually.

Very few manuals are perfect and this is surely not one of them. The author will
gladly accept any useful or constructive criticism on how to improve it.

120 CHAPTER 10. DEVICE SERVER IN C BY A.GOTZ

Bibliography

[1] P.J.Asente and R.R.Swick, X Window System Toolkit, Digital Press, 1990.

[2] A.D.Birell and B.J.Nelson, “Implementing Remote Procedure Calls” in ACM
Transactions on Computer Systems 2(1), February 1987.

[3] D.Carron, “Using Dataports as an Interprocess Communication Mechanism”,
ESRF internal document, 1993.

[4] L.Claustre, “The Automatic Class Generator”, ESRF internal document, 1993.
[5] P.Coad and E.Yourdon, Object-Oriented Analysis, Prentice-Hall, 1991.

[6] A.Gotz, J.Meyer and W.D.Klotz, “Object Oriented Programming Techniques
Applied to Device Access and Control”, Proceedings of the International Confer-
ence on Accelerator and Large Experimental Physics Control Systems, Tsukuba
(Japan), November 1991.

[7] A.Gotz, W.D.Klotz, J.Meyer, E.Taurel, M.Schofield, P.Makijirvi andM.Karhu,
“A Distributed Control System based on the Client-Server Model” in Proceedings
of The International Conference cum Workshop on Control and Data Acquisi-
tion, Calcutta (India), November 1991.

[8] K.E.Gorlen, S.M.Orolow and P.S.Plexico, Data Abstraction and Object Oriented
Programming in C++, John Wiley & Sons, 1990.

[9] A.LLHolub, C+C++ Programming with Objects in C and C++

[10] F.L.Laclare, “Overview of the European Synchrotron Light Source” in IEEE
Particle Accelerator Conference, Washington D.C. (USA), March 1987, pp. 417-
421.

[11] S.Mullender, Distributed Systems, ACM Press, 1990.
[12] S.Oualline, Practical C Programming, O’Reilly & Associates, Inc., 1991.

[13] G.Pepellin, “ESRF Beamline Device Names Compendium”, ESRF internal
document, 1993.

[14] T.Plum, C Programming Guidelines, Plum Hall Inc., 1989.

[15] E.Taurel, “ESRF Machine Device Names Compendium”, ESRF internal doc-
ument, 1993.

121

122 BIBLIOGRAPHY

Chapter 11

DSAPI
by J.Meyer and A.Gotz

11.1 Introduction

The DSAPT is the TACO Device Server Application Programmer’s Interface for C
and C++ programs. It is used by clients and servers to import, execute commands
on, free and explore TACO devices. It uses the ONC-RPC (SUN remote procedure
call) as underlying communication protocol. This document describes the latest
version of the DSAPI V6.0.

This document is split into the following sections : “Getting Started” describes how
to write a simple client which uses DSAPI, should be read by beginner’s who want
to get a quick start; “C library” is a reference guide to all DSAPI functions for
clients and servers; “XDR Types” describes the XDR types supported by DSAPI;
“Changes” describes what are the main changes in the different major releases;
“Platforms Supported” lists the different platforms and compilers supported; “In-
terfaces to other Languages” contains a summary of DSAPI interfaces in other lan-
guages. Beginners should read “Getting Started” first, other programmers should
read what changes have taken place in the latest version and use the reference guide.

11.2 What is DSAPI ?

DSAPI is a C (and C++) programmer’s interface for accessing device in a TACO
control system.

Devices in a TACO control system are network objects created and served by pro-
cesses called device servers. A device is identified by its ASCII name :

[//facility/]domain/family/member

Each device understands a set of commands. The commands enable a remote client
to execute actions on a device e.g. for a powersupply switch it on or off, read the
state, read the current.

The DSAPIT gives remote and local clients access to device commands.

Using DSAPI it is possible to execute any command on any device (assuming the
client has the necessary permission) in a TACO control system. Data is passed from
the client to the device via the input and output parameters of the DSAPI.
Devices are organised into classes. Each class implements and understands a fixed
set of commands. The list of commands for a device class is documented in the
Device Server User’s Guide (DSUG). The set of C functions which implement the
DSAPI are archived in static or shared libraries for all platforms supported.

123

124 CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

11.3 Getting Started

This section will take you through the steps of writing a simple application us-
ing DSAPI. Two versions of a simple “Hello World” in C for sending a string to
a “hello world” device will be presented The first version demonstrates using the
DSAPI to execute commands synchronously while the second version demonstrates
asynchronous command execution. The user will be taken through the stages of
compiling, linking, debugging and running. The section will terminate with tips
on common pitfalls encountered by DSAPI beginner’s (and even old-timer’s some-
times).

11.3.1 “Hello World” (synchronous) example

This example will take you through the steps of writing a simple program to send
a “Hello World” string to a device synchronously.

Step 1

The first step is to find out which commands the device understands. If you don’t
know them off by heart then get hold of the user guide (DSUG) for that device
class and read it. The DSUG will list all commands implemented for the device and
their input and output arguments.

The command we will use in this example is DevHello.

Step 2

The next step is to write the program. This assumes we know what we have to
control and how.

In the case of this example we want a program which sends a string to a device and
reads one back.

The program is written in C and uses a simple ascii interface to interact with the
user. The program listing can be found below (cf. section “Code Example”).

ALL device access is done using DSAPI (of course). The main statements to note
are :

e #include <API.h> - include file required by all clients (and servers). Nec-
essary to prototype all DSAPI functions, and to define symbols and types.
APILh will include other include as necessary.

e devserver hs - variable which will contain the device handle. Every device
has to have a device handle. It is passed as input parameter to every DSAPI
call. It contains all information necessary to communicate with the device
on the network (network address, protocol, security etc.) as well as various
bookkeeping information (device name). The device handle is initialised on
the first successful call to dev_import () (cf. below).

e dev_import() - initialise the device handle. This call takes as input the
device name and permission level requested. It checks the database to see if
the device is defined and if so it asks the database for the device’s network
address. Then it tries to contact the device server. All this information is
stored in the device handle and returned to the user. If the device is not
defined in the database or the user does not have the necessary permission to
use the device dev_import () will return an error and the device handle will
be NULL. The import is stateless this means the routine will not fail if the
device server is not running. The 2nd parameter is used for security (this is
discussed in the C library reference).

11.3. GETTING STARTED 125

e dev_putget () - execute a command on the device. This call is the workhorse
of DSAPI It is used to execute a command on a device synchronously i.e.
the client sends her request to the device and then waits for the command
to be executed and for the answer to be returned before continuing. For
the asynchronous version see below. The client has to specify the input and
output arguments and their types. This information is normally obtained
from the DSUG but can be constructed dynamically (using dev_cmd_query().
All parameters are passed as pointers. If the output arguments contain any
pointers in them the client can choose to allocate space for the result himself
or let DSAPI allocate space. (by setting the pointer to NULL) In the latter
case it is up to the client to free the space allocated by DSAPI. The question
of when to allocate and when to free is a tricky one and is treated in more
detail in the section “Common Pitfalls”.

e dev_free() - free the device handle. This call will try to inform device server
that the client is not connected to this device anymore. If this is the client’s
last network connection to the device server it will free the socket connection
to the device server. Finally it will free the device handle structure allocated
by dev_import ().

Step 8

The next step is to compile and link the client. This is different depending whether
you are using a Unix-like (HP-UX, Solaris, Linux, VxWorks), OS9 or a Windows-NT
system.

Unix and OS9

To compile under Unix and OS9 you have to tell the compiler where to find the
DSAPI include files and which libraries to link with.

Assuming the your program is called helloworld, $DSHOME is an environment vari-
able which points to the root directory of your TACO installation and $OS the
operating system type (s700 for HP-UX 9.x, hpux10.2 for HP-UX 10.2, solaris
for Solaris, 1inux for Linux, vxworks for VxWorks, os9 for 0S9) then simply type

$CC $CFLAGS -I$DSHOME/include -L$DSHOME/1ib/$0S -ldsapi -ldbapi -ldsxdr
helloworld.c -o helloworld.

$CC and $CFLAGS have to be positioned for each platform (refer to the example
Makefile). Windows-NT

To compile under Visual C++ 4.2 you need to set the following options using the
graphical interface :

to be filled in ...

Step 4

The final step is to run your program. Make sure you are in a shell interpreter
(e.g. bash, ksh, tcsh, csh for Unix and MSDOS for Windows-NT) and simple
type the name of the client program plus the name of the device i.e. helloworld
exp/hello/world. If you forget to provide a device name the program will prompt
you for one.

Example code - helloworld.c

static char RcsId[] = "@(#)$Header: /segfs/dserver/doc/notes/DSN101/RCS/DSN101.tex,v 2.1 199
/s o ok ok o o ok o ok o o o o ok ok ok sk sk sk sk skok sk o ok ok o o o o o ok ok ok ok sk sk sk sk sk sk sk ok ok o o o o o ok ok ok ok ok sk sk sk sk sk ok ok ok ok o

File : helloworld.c

126 CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

Project : Device Server

Description: A simple test client to test using the synchronous
device server API.

Author(s) : Andy Goetz
Original : November 1997

$Revision: 2.1 $
$Date: 1997/11/13 14:16:40 $

$Author: goetz $

$Log: DSN101.tex,v $
Revision 2.1 1997/11/13 14:16:40 goetz
first release of DSAPI V6

Revision 1.5 1997/11/13 14:13:31 goetz
totally reworked doc; added "Hello World" examples; asynchronous call; xdr types

*—***/

#include <Admin.h>
#include <API.h>

main(argc,argv)
unsigned int argc;
char **argv;

{

devserver hw;
long access = WRITE_ACCESS, error, status;
char *ch_ptr,helloworld[256], dev_name[256];

switch (argc) {
case 1:
printf ("enter device name [\"exp/hello/world\"1? ");
if (NULL==gets(dev_name) || ’\0’==dev_name[0])
strcpy(dev_name, "exp/hello/world");

break;
case 2:
strcpy(dev_name,argv[1]);
break;
default:
printf("usage: helloworld [device name]\n");
exit(1);
}

status = dev_import(dev_name,access,&hw,&error);
printf ("dev_import(%s) returned %d\n",dev_name,status);

11.3. GETTING STARTED 127

if (status !'= 0)

{
printf ("%s",dev_error_str(error));
exit(1);

}

sprintf (helloworld, "Hello World");
ch_ptr = NULL;

status = dev_putget(hw,DevHello,
&helloworld,D_STRING_TYPE,
gch_ptr,D_STRING_TYPE,
&error) ;

printf ("\nDevHello dev_putget() returned %d\n",status);

if (status == 0)

{
printf("device answered : %s\n",ch_ptr);
dev_xdrfree(D_STRING_TYPE, &ch_ptr, &error);
}
else
{
dev_printerror_no (SEND,NULL,error) ;
}

dev_free(hw,&error) ;
exit (0);

11.3.2 “Hello World” (asynchronous) example

This example is a repeat of the above but using the asynchronous version of DSAPI.
Asynchronism in this case means the client requests a command to be executed but
does not wait for the server to respond. Instead it continues on to the next statement
immediately. The request is put into the server’s buffer of incoming requests. After
the server has executed the command it returns an acknowledge plus any output
arguments to the client asynchronously. The reply is buffered in the clients queue
of incoming replies. When the client is ready it polls its input queue to see if there
are any replies pending (using the dev_synch() call).

Asynchronous command execution is more difficult to program than synchronous.
However it is more efficient and is particularly useful for windowing programs and
for programs which want to start multiple commands on multiple devices executing
simultaneously and don’t want to wait for the command to finish execution.

This example is identical to the above example excepting for the fact that DevHello
command is executed asynchronously. A callback function specified. This makes
the code longer and more slightly more complicated to read.

Step 1

Understanding the device - same as Step 1 above.

128 CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

Step 2

Writing the program - in principal same as Step 2 above however this time round
use the asynchronous version of DSAPI.
The new calls are :

e callbacks - functions to be called when client receives a reply. Every reply
received by the client has to be signalled to the client and unpacked. The
callback functions serve this purpose. One callbacks functions has been im-
plemented for this example - hello_callback(). The client can pass its own
data with every asynchronous call which can be used to identify each reply
during the callback (user_data parameter).

e dev_putget_asyn() - execute a command asynchronously on a device. As
explained above the client does not wait for the server to accept the request
for the reply. The input arguments are the same as for dev_putget () (syn-
chronous) plus three additional arguments. The additional arguments specify
the callback function (to be triggered during a call to dev_synch()), a pointer
to user data and an asynchronous id (returned by dev_putget_asyn().

e dev_synch() - check to see if any asynchronous replies have been received. If
so they are unpacked and the corresponding callback is triggered. dev_synch()
takes as input the amount of time it should wait for pending replies before
continuing.

Step 3

Compiling and linking - same as Step 3 above for Unix and OS9. The asynchronous
calls are part of the standard library.
Not support under Windows-NT (yet).

Step 4

Running - same as Step 4 above for Unix and OS9.
Not supported under Windows-NT (yet).

Example code - helloworld asyn.c

static char RcsId[] = "@(#)$Header: /segfs/dserver/doc/notes/DSN101/RCS/DSN101.tex,v 2.1 !
[etk ks ke ks ke sk ko sk ke ko sk o ok ko ko sk sk o ks ok sk sk ok ek ok sk ks ko sk o sk ko sk ok o sk ok

File : helloworld_asyn.c
Project : Asynchronous Device Server’s
Description: A simple test client to test using the asynchronous

device server API using callbacks.
Author(s) : Andy Goetz
Original : January 1997

$Revision: 2.1 $
$Date: 1997/11/13 14:16:40 $

$Author: goetz $

11.3. GETTING STARTED 129

$Log: DSN101l.tex,v $
Revision 2.1 1997/11/13 14:16:40 goetz
first release of DSAPI V6

Revision 1.5 1997/11/13 14:13:31 goetz

totally reworked doc; added "Hello World" examples; asynchronous call; xdr types

*—***/

#include <API.h>
#include <DevStates.h>

/Koo ok ok ks sk sk ok o o sk sk ok ok ok sk sk ok ok o sk ok ok ok ok sk sk ok o sk sk o ks ok o ko ok ok ek sk ok ok o sk sk ok o ks ok o o sk ok
Function : void hello_callback()

Description: callback function to be called asynchronously after executing
the DevHello commands

***—*/

void hello_callback(ds, user_data, cb_data)
devserver ds;

void *user_data;

DevCallbackData cb_data;

{
long error;
printf ("hello_callback(s): called with asynch_id=%d, status=/d (error=%d) user data
ds->device_name,cb_data.asynch_id, cb_data.status, cb_data.error, (char*)user_data);
printf("hello_callback(}s): time executed by server = {Jd s,%d us}\n",
ds->device_name,cb_data.time.tv_sec,cb_data.time.tv_usec);
if (cb_data.status == DS_0K)
{
printf ("hello_callback(%s): device answered=Ys\n",
ds->device_name, * (DevString#*)cb_data.argout) ;
dev_xdrfree (D_STRING_TYPE, &cb_data.argout, &error);
}
else
{
dev_printerror_no (SEND,NULL,cb_data.error) ;
}
return;
}
/) ket sk ks o ko sk o sk ke ko ek o sk o ke o o sk ko ks sk ke sk ko ok sk sk e ko ko ok sk e sk e ko ek o sk o ko o sk ok o
Function : main()
Description: main function to test asynchronous DSAPI.

***—*/

130

CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

main(argc,argv)

unsigned int argc;

char **argv;

{

/%

devserver hw;

long access = WRITE_ACCESS, error, status;
char ch_ptr, helloworld[256], dev_name[256];
struct timeval timeout_25s = {25,0};

long asynch_id;

char *user_data="my data";

switch (argc) {
case 1:
printf("enter device name [\"exp/hello/world\"1?7 ");
if (NULL==gets (dev_name) || ’\0’==dev_name[0])
strcpy(dev_name, "exp/hello/world") ;

break;

case 2:
strcpy(dev_name,argv[1]);
break;

default:

printf("usage: helloworld_asyn [device name]\n");
exit(1);
}

imported = dev_import(dev_name,access,&hw,&error);
printf ("dev_import(%s) returned %d\n",dev_name,imported);

if (imported != 0)

{
printf ("%s",dev_error_str(error));
exit(1);

}

sprintf (helloworld, "Hello World");
ch_ptr = NULL;

status = dev_putget_asyn(hw,DevHello,
&helloworld,D_STRING_TYPE,
gch_ptr,D_STRING_TYPE,
(DevCallbackFunction*)void_callback,
(void*)user_data, &asynch_id,
&error) ;
printf ("\nDevHello dev_putget_asynch()d) returned %d\n",asynch_id, status);
if (status < 0) dev_printerror_no(SEND,NULL,error);

* wait for answer from client (waits for a max of 25 s)

11.3. GETTING STARTED 131

*/
status = dev_synch(&timeout_25s, &error);
dev_free(hw,&error) ;
exit (0);

}

11.3.3 Common Pitfalls

Using an API is easy once you know how. For beginner’s this is not the case. This
section will list the common pitfalls encountered by beginner’s (and old-timers too!)
when they start using DSAPL

11.3.4 Nethost

Every TACO control system is managed by a NETHOST. The NETHOST is the
name of the host where the TACO Manager has been started. It is referred to as
the facility in the device name. The Manager is the entry point for all TACO
clients and servers.

A common error when starting an application (e.g. helloworld) is to forget to
specify the NETHOST environment variable.

In this case you will get an error similar to this :

Thu Nov 6 13:56:42 1997 environmental variable NETHOST not defined

The solution is to set the environment variable to the name of a host where a
TACO control system Manager is running e.g. “setenv NETHOST libra” for csh
or “export NETHOST=libra” for ksh or bash.

An alternative to specifying the NETHOST environment variable is to qualify
the device name with the facility field which is the same as the NETHOST e.g.
//libra/exp/hello/world.

If the Manager is not running you will get the following error :

Thu Nov 6 14:03:26 1997 no network manager available

If you don’t know which host is your NETHOST then ask your TCO system ad-
ministrator/guru. If you are supposed to be the guru then start the Manager. If
you don’t know how then send an email to the TACO help-line taco@esrf. fr

11.3.5 Shared Libraries

Another common error is not finding the DSAPI shared libraries.
If your application dies with the following message :

./helloworld: can’t load library ’libdsapi.so’

You must add the DSAPI library directory for your platform to the shared library
path searched by your system.

For Solaris and Linux use :

set $LD_LIBRARY_PATH:$DSHOME/1ib/$0S for csh and tcsh,

export $LD_LIBRARY PATH=$LD_LIBRARY PATH:$DSHOME/1ib/$0S for ksh and bash.
For HP-UX use :

set $SHLIB_PATH:$DSHOME/1ib/$0S for csh and tcsh,

export $SHLIB PATH=$SHLIB PATH:$DSHOME/1ib/$0S for ksh and bash.

132 CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

Where $DSHOME is and environment variable pointing to the TACO home direc-
tory and $OS the operating system flavour.
Shared libraries are not supported on 0S89 and Windows/NT (yet).

11.3.6 Makefiles

Although the compile+link instructions listed above can be typed every time you
want to recompile+relink it is much more efficient to write a makefile with the
necessary instructions.

The TACO makefiles are multi-platform and make use of the conditional statements
supported by GNU make (also known as gmake). gmake supports statements of
the kind ifdef $(symbol), else and endif. Most TACO conditional makefiles
use the same symbols. These are :

e _hp9000s700 - for HPPA 1.0 systems running HP-UX 9.x

e _hpux10 - for HPPA 1.0 systems running HP-UX 10.2

e _solaris - for Solaris

e linux - for Linux

e vw68k - for Motorola 68k systems running VxWorks

e vwx86 - for Intel x86 systems running VxWorks

e _UCC - for OS9 systems using the Ultra C and C++ compiler
e unix - for HP-UX, Solaris, Linux and VxWorks platforms

A simple example Makefile for the helloworld program could look like this :

#

#

Makefile for helloworld - a simple DSAPI client
#

#

TACO home directory

#

DSHOME = $(LOCAL_DSHOME)

#

library home directory - platform dependant
#

ifdef __hpux10

LIBHOME = $(DSHOME)/1ib/hpux10.2
endif # __hpux10

ifdef _solaris

LIBHOME = $(DSHOME)/lib/solaris
endif # _solaris

ifdef linux

LIBHOME = $(DSHOME)/1ib/linux
endif # linux

ifdef _UCC
LIBHOME = $(DSHOME)/1ib/os9
endif # _UCC

ifdef vw68k
LIBHOME = $(DSHOME)/1ib/vw68k

11.3. GETTING STARTED 133

endif # vw68k
ifdef vwx86
LIBHOME = $(DSHOME)/1lib/vwx86
endif # vwx86
#
include files home directory
#
INCLDIRS = -I$(DSHOME)/include \
-I$(DSHOME) /include/private
#
compiler flags - platform dependant
#
ifdef __hpux10
CC = /bin/cc
CFLAGS = -Aa -g -DEBUG -Dunix -D_HPUX_SOURCE -D__hpux10 -DBSD=199704 \
-c $(INCLDIRS)
endif # __hpux10
ifdef _solaris
CC = /opt/SUNWspro/SC4.0/bin/cc
CFLAGS = -Xa -g -Dsolaris -DEBUG -c $(INCLDIRS)
endif # _solaris
ifdef linux
CC = gcc
CFLAGS = $(INCLDIRS) -Dlinux -Dunix -ansi -DEBUG -g -c
endif # linux
ifdef _UCC
CC = xcc
CFLAGS = -mode=c89 -g -D EBUG -to osk -tp 020 -x il -e as=. $(INCLDIRS)
endif # _UCC
ifdef vw68k
CC = cc68k
CFLAGS = -Dvxworks -Dunix -DCPU=MC68020 -ansi -m68030 \
-msoft-float -DEBUG -e $(INCLDIRS) -g
endif # vw68k
ifdef vwx86
CC = cc386
CFLAGS = -v -c -Dvxworks -Dunix -DCPU=I80386 -ansi \
-DEBUG $(INCLDIRS) -g
endif # vwx86
#
library flags
#
ifdef __hpux10
LFLAGS = -L$(LIBHOME) -ldsapi -ldsxdr -ldbapi -1m
endif # __hpux10
ifdef _solaris
LFLAGS = -L$(LIBHOME) -ldsapi -1ldsxdr -ldbapi -1lnsl -lsocket -1m
endif # _solaris
ifdef linux
LFLAGS = -L$(LIBHOME) -ldsapi -ldsxdr -ldbapi -1m
endif # linux
ifdef _UCC
LFLAGS = -L$(LIBHOME) -1 dsapi -1 dsxdr -1 dbapi -1 rpclib -1 netdb_small \
-1 socklib.1l -1 sys_clib.l -1 unix.1

134 CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

endif # _UCC

all : helloworld

helloworld : helloworld.c
$(CC) $(CFLAGS) helloworld.c -o helloworld $(LFLAGS)

NOTE: don’t forget to start all rules with a tabulation mark !

Although even this simple example looks complicated keeping all platform depen-
dancies in one file can prove to be a time saver when developing on multiple plat-
forms.

11.3.7 Memory Allocation

Probably the trickiest part for beginners to DSAPI is memory allocation. DSAPI
uses the memory allocation of the XDR library of the ONC-RPC. The difficulties
come from the fact that all procedure calls are to remote servers and pointers to
memory areas have to be copied to the (remote) server and vice versa.

The rules for memory allocation in DSAPI can be summarised as follows :

1. arguments are either outgoing (input) or incoming (output) from the client
to the server,

2. all input and output arguments are passed via pointers,
3. memory for input arguments have to allocated by the client (of course !),

4. memory for pointers in output arguments can be allocated either by the client
or by the DSAPI (actually the XDR layer),

5. if memory in output arguments is to be allocated by DSAPI then initialise
pointers in output arguments to NULL,

6. if pointers to memory in output arguments are NOT initialised to NULL
DSAPT assumes the client has allocated the necessary memory and will try to
use it (with catastrophic consequences if this is not the case!),

7. any memory allocated by DSAPI has to be freed by the client using dev_xdrfree().

8. in order to avoid nasty bugs or strange core dumps therefore clients MUST
initialise all incoming pointers to NULL or to locally allocated memory.

If you understand the above rules and follow them you should not have any prob-
lems. The problems come from not understanding and following these rules. The
XDR types supported by DSAPT are covered in the section on “XDR Types”.

To illustrate the above rules here are some examples :

e simple C types
devserver ps;

long status, error;
float readvalue;

status = dev_putget(ps, DevReadCurrent, NULL, D_VOID_TYPE,

11.3. GETTING STARTED 135

&readvalue, D_FLOAT_TYPE, &error);
printf ("current %6.3f\n",readvalue);

This is a simple example of using a simple C type to receive output from the
server. Simply pass the pointer to the simple type to DSAPI.

NOTE : DSAPI cannot allocated memory for simple types because it expects a
pointer to a value and not a pointer to a pointer to a value and it therefore has
no way of distinguishing between a pointer to the value ZERO and a pointer
to NULL (if you know what I mean ...)

e output arguments - memory allocated by client

devserver ps;

long status, error, i;

float readvalues[MAX_READVALUES];
DevFloatVarArray float_vararr;

float_vararr.length = MAX_READVALUES;
float_vararr.sequence = readvalues;
status = dev_putget(ps, DevReadAll, NULL, D_VOID_TYPE,
&float_vararr, D_VAR_FLOATARR, &error);
printf("read %d value\n\n",float_vararr.sequence) ;
for (i=0; i<float_vararr.sequence; i++)
{
printf (" current[’d] %6.3f\n", i, readvalues[i]);
}

In this example the client receives a variable length array of floats. The client
has allocated memory for the array of floats itself. It is the responsibility of
the client to ensure that sufficient memory is allocated for the return argments
and that the server does not send more values than the client expects.

¢ output arguments - memory allocated by DSAPI

devserver ps;
long status, error, i;
DevFloatVarArray float_vararr;

float_vararr.length = 0;

float_vararr.sequence = NULL;

status = dev_putget(ps, DevReadAll, NULL, D_VOID_TYPE,
&float_vararr, D_VAR_FLOATARR, &error);

printf("read %d value\n\n",float_vararr.sequence) ;

for (i=0; i<float_vararr.sequence; i++)

136 CHAPTER 11. DSAPI BY J.MEYER AND A.GOTZ

{

printf (" current[%d] %6.3f\n", i, float_vararr.sequencel[i]);
}
dev_xdrfree(D_VAR_FLOATARR, &float_vararr, &error);

In this example the client sets the sequence to NULL and lets DSAPI allo-
cate memory for the output arguments. The client has to free the allocated
memory.

11.3.8 Advanced Features

Before leaving the “Getting Started” section we would like to mention some advanced
features of the DSAPI which are very useful.

11.3.9 Timeouts

The DSAPI is managed by timeouts. Both synchronous and asynchronous calls
have a timeout. A client will receive a timeout error (DevErr RPCTimedOut) if the
server has not sent an answer within the timeout period.

The default timeout for synchronous calls is 3 seconds. The default timeout for
asynchronous calls is 25 seconds.

The client can modify the timeout per device using the dev_rpctimeout () call (cf.
the C library reference). This can be necessary if the request is know to take longer
than the default timeout to execute.

If a client gets lots of timeouts there could be a network problem i.e. lots of network
traffic. This can fixed by simply changing from UDP to TCP protocol (see next
section).

11.3.10 Protocol

The DSAPI is based on the ONC-RPC and makes use of UDP and TCP (the two
main IP protocols). The difference between the two protocols is :

e UDP is a connectionless unreliable protocol. UDP has the advantage that it
does not require a dedicated file descriptor per client-server connection and it
is (sometimes) faster than TCP. It has the disadvantage that it does not retry
if a request fails and it is limited in maximum packet size to 8 kilobytes. All
device imports are done using UDP. UDP is the default protocol

e TCP is a connection-oriented reliable protocol. It has the advantage that it is
reliable i.e. it will retry if a request fails to be acknowledge, and can transfer
unlimited packet sizes (in reality limited by the receiving computer to a few
megabytes). It has the disadvantage that it requires a file descriptor per
client-server connection and it is a more complicated protocol to implement.

To change from UDP to TCP or vice-versa use the dev_rpc_protocol() call (cf.
below).

11.4. C LIBRARY 137

11.4 C Library

Below you will find all the DSAPI calls in the C library in alphabetical order.

11.4.1 Synchronous Client API

These calls are used by DSAPI clients to send a synchronous request to a device
server. The notion of client-server refers to sender and receiver of each DSAPI call.
This means a device server itself can become a DSAPI client if it accesses a device.

dev_cmd_query()

typedef struct {
u_int length;
DevCmdInfo *sequence;
} DevVarCmdArray;

typedef struct {

long cmd; /* command */

char cmd_name [20]; /* command name as ASCII string */
char xin_name; /* description of input arguments */
long in_type; /* type of input arguments */

char *out_name; /* description of output arguments x/
long out_type; /* type of output arguments */

} DevCmdInfo;

long dev_cmd_query (ds, varcmdarr, error)

devserver ds; /* client handle */
DevVarCmdArray *varcmdarr; /* results of query */
long *error; /* error */

Dev_cmd_query() returns a sequence of DevCmdInfo structures containing all avail-
able commands, their names, their input and output data types, and type descrip-
tions for one device. Commands and data types are read from the command list in
the device server. Command names are read from the CMDS table of the resource
data base. Data type descriptions for input and output arguments for a command
function have to be specified in the resource database in the CLASS table as:

CLASS/class_name/cmd_name/IN_TYPE: "Current in mA"
CLASS/class_name/cmd_name/0OUT_TYPE: "Power in MW"

class_name : Name of the device class. Retrieved from
the device server.

cmd_name : Name of the command. Retrieved from the
CMDS table in the resource data base.

dev_free()

long dev_free (ds,error)
devserver ds; /* client handle */
long *error; /* error */

Dev_free() closes the connection to a device associated with the passed client handle.

138 CHAPTER 11. DSAPI BY J.MEYER AND A.GOTZ

dev_import()

long dev_import (dev_name,access,ds_ptr,error)

DevString dev_name; /* device name */

long access; /* requested access level */

devserver *ds_ptr; /* returned pointer to the client
handle */

long *error; /* error */

Opens a connection to a device and returns a client handle for the connection.
Dev_import can distinguish between local and remote devices.

If the control system is running with security on then the access parameter deter-
mines what level of access permission the client wants on the device. The following
levels are supported :

1. READ_ACCESS for read-only access

2. WRITE_ACCESS for read and write access (default)
3. SI_WRITE_ACESS for single user write access

4. SU_ACCESS for super-user access

5. SI_SU_ACCESS for single user super-user access

6. ADMIN_ACCESS for administrator access

The default access is WRITE_ACCESS and correpsonds to access=0. If the TACO con-
trol system is running with security the client has to have the necessary permission
in the security database for the (UID,GID,HOST,NETWORK) quadrupole.

For more information on security refer to “Access Control and Security for the ESRF
Control System” by J.Meyer (DSN/102).

dev_inform/()

typedef struct {
char device_name[80];
char device_class[32];
char device_type[32];
char server_name[80];
char server_host[32];
} DeviInfo;

long dev_inform (clnt_handles, num_devices, dev_info, error)

devserver *clnt_handles; /* list of client handles */
long num_devices; /* number of client handles */
DevInfo *xdev_info; /* returned list of

information structures */

long xerror; /* error */

Dev_Inform() returns to the user a structure containing device information for every
specified device client handle. The information structure contains:

e the name of the device,
e the class name,

e the device type,

11.4. C LIBRARY 139

e the device server name,

e the host name of the device server

The returned information structures are allocated by dev_inform() with malloc(3C).
The can be freed by using free(3C).

dev_put()

long dev_put (ds,cmd,argin,argin_type,error)
devserver ds; /* client handle */
long cmd ; /* command */
DevArgument argin; /* pointer to input arguments */
DevType argin_type; /* type of input arguments */
long *error; /* error */

Dev_put() executes a command on the device associated with the passed client
handle, without returning any output data. The device might be remote or local.
Input data types must correspond to the types specified for this command in the
device server’s command list. Otherwise an error code will be returned. The output
data type in the device server’s command list must be set to D_VOID_TYPE. All
arguments have to be passed as pointers.

dev_put_asyn()

long dev_put_asyn (ds,cmd,argin,argin_type,error)

devserver ds; /* client handle */

long cmd ; /* command */

DevArgument argin; /* pointer to input arguments */
DevType argin_type; /* type of input arguments */
long *error; /* error */

The function dev_put_asyn() is similar to dev_put(). The only difference is, that
dev_put_asyn() sends a request to execute a command to a device server and re-
turns immediately when the command was received. The only errors which can
be returned by dev_put_asyn() are errors during the sending of the command. A
correct return status only indicates that the command execution was started.

No failures during command execution can be reported back to the client.

dev_putget()

long dev_putget (ds,cmd,argin,argin_type,argout,argout_type,error)

devserver ds; /* client handle */

long cmd ; /* command */

DevArgument argin; /* pointer to input arguments */
DevType argin_type; /* type of input arguments */
DevArgument argout; /* pointer to output arguments */
DevType argout_type; /* type of output arguments */
long *xerror; /* error */

Dev_putget() executes a command synchronously on the device associated with the
passed client handle. The device might be remote or local. Input and output data
types must correspond to the types specified for this command in the device server’s
command list. Otherwise an error code will be returned. All arguments have to be
passed as pointers.

Memory for outgoing arguments will be automatically allocated by XDR, if pointers
are initialised to NULL. To free the memory allocated by XDR afterwards, the
function dev_xdrfree() must be used.

140 CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

dev_putget_raw()

typedef struct {
u_int length;
char *sequence;
} DevOpaque;

long dev_putget_raw (ds,cmd,argin,argin_type,argout,argout_type,error)

devserver ds; /* client handle */

long cmd ; /* command */

DevArgument argin; /* pointer to input arguments */

DevType argin_type; /* type of input arguments */

DevOpaque *argout; /* pointer to opaque data */

DevType argout_type; /* type of output arguments,
returned by the command */

long xerror; /* error */

Dev_putget_raw() executes a command on the device associated with the passed
client handle and returns the outgoing arguments as a block of opaque data in
XDR format. All arguments have to be passed as pointers. Memory for the
opaque block will be allocated by the RPC if the sequence pointer is initialised
to NULL. The allocated memory can be freed with dev_xdrfree() and the type
identifier D_.OPAQUE_TYPE.

dev_rpc_protocol()

long dev_rpc_protocol (ds, protocol, error)

devserver ds; /* client handle */
int protocol; /* transport protocol */
long *error; /* error */

By calling dev_rpc_protocol() with one of the two defined protocol parameters
D_UDP and D_-TCP (APLh), the transport protocol for an open RPC connec-
tion will be set to the chosen protocol. Before switching the protocol, an RPC
connection to a device server has to be opened by a dev_import() call.

All devices implemented in the same server and imported by the client use the same
RPC connection. Changing the protocol of a RPC connection with dev_rpc_protocol
means changing the protocol for all devices of the same server.

e D_.UDP
UDP protocol with maximal 8kbyte data transfer.

e D_TCP
TCP protocol. TCP point to point connection with no transfer limitations.

dev_rpc_timeout()

long dev_rpc_timeout (ds, request, dev_timeout, error)

devserver ds; /* client handle */

int request; /* CLSET_TIMEOUT or CLGET_TIMEOUT */
struct timeval *dev_timeout; /* timeout value */

long *xerror; /* error */

Sets or reads the timeout for a RPC connection with UDP protocol. A request
to set the timeout has to be asked with CLSET_TIMEOUT as request parameter
and the timeout specified by the timeval structure dev_timeout. The timeout will

11.4. C LIBRARY 141

be set without any retry. A request to read the timeout has to be asked with
CLGET_TIMEOUT, and the current timeout will be returned in dev_timeout.

All devices implemented in the same server and imported by the client use the same
RPC connection. Changing the timeout of a RPC connection with dev_rpc_timeout
means changing the timeout value for all devices of the same server.

dev_xdrfree()

long dev_xdrfree (type, objptr, error)

DevType type; /* type of arguments */
DevArgument objptr; /* pointer to arguments */
long *xerror; /* error */

Dev_xdrfree frees the memory for device server data allocated by XDR. An example
for the use of dev_xdrfree() is the freeing of a D_-VAR_FLOATARR data type. Using
dev xdrfree() you don’t have to care about the length of the internal sequence of float
values. Just pass a pointer to a D_-VAR_FLOATARR structure and the allocated
memory for the sequence will be freed, according to the length specified in the
structure.

11.4.2 ASynchronous Client API

These calls are used by DSAPI clients to send and receive asynchronous requests
to a device server. The notion of client-server refers to sender and receiver of each
DSAPI call. This means a device server itself can become a DSAPI client if it
accesses a device.

dev_asynch_timeout

long dev_asynch_timeout (devserver ds, long request,
struct timeval *tout, long *error)

Call to set/get the timeout for an asynchronous call to the device ds. Get/Set oper-
ation is determined by request = CLSET_TIMEOUT or CLGET_TIMEOUT. The timeout
is returned/specified in tout. If an error occurs the call returns DS_NOTOK and an
appropiate error code in error.

dev_pending

long dev_pending (devserver ds)

Call to return the number of asynchronous requests still pending replies for device
ds. If ds = NULL then return the total number of pending calls.

dev_putget_asyn()

struct _DevCallbackData {

long asynch_id; /* id of asynchronous call */

DevArgument argout; /* pointer to output argument */

DevType argout_type; /* argout type */

long status; /* status of command execution */

long error; /* error code after command execution */
struct timeval time; /* time at server when command was executed */

} DevCallbackData;

void callback (devserver ds, void *user_data, DevCallbackData cb_data);

142 CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

long dev_putget_asyn (ds,cmd,argin,argin_type,argout,argout_type,
callback, user_data, asynch_id, error)

devserver ds; /* client handle */

long cmd; /* command */

DevArgument argin; /* pointer to input arguments */

DevType argin_type; /* type of input arguments */

DevArgument argout; /* pointer to output arguments */

DevType argout_type; /* type of output arguments */
DevCallbackFunction *callback; /* pointer to callback function */

void *user_data; /* pointer to user data to pass to callback */
long *asynch_id; /* asynchronous id returned by call */

long *error; /* error */

Dev_putget_asyn() executes a command asynchronously on the device associated
with the passed client handle. The device must be remote and compiled with
V6. Input and output data types must correspond to the types specified for this
command in the device server’s command list. Otherwise an error code will be
returned. All arguments have to be passed as pointers.

Memory for outgoing arguments will be automatically allocated by XDR, if pointers
are initialised to NULL. To free the memory allocated by XDR afterwards, the
function dev_xdrfree() must be used.

The client continues immediately and does not wait for the server to execute the
request. The callback function has to be specified otherwise an error will be re-
turned. The callback function is triggered by making a call to dev_synch(). The
client can pass data to the callback function via user_data. The callback function
receives the device server handle, user data and a DevCallbackData structure as
input. The function returns a (unique) id in asynch_id for each call.

dev_synch()

long dev_synch (struct timeval *timeout, long *error);

This calls checks to see if any asynchronous replies are pending. If so it triggers
the associated callback routines. The call will wait for a maximum of timeout time
before returning if no replies are received otherwise it returns immediately after
unpacking all received replies. A timeout of zero means check to see if any replies
are pending otherwise returing immediately.

11.4.3 Server

dev_cmd()

long dev_cmd (ds, cmd, argin, argin_type, argout, argout_type, error)
DevServer ds; /* object pointer */
long cmd; /* command */
DevArgument argin; /* pointer to input arguments */
long argin_type; /* type of input arguments */
DevArgument argout; /* pointer to output arguments */
long argout_type; /* type of output arguments */
long *xerror; /* error */

Dev_cmd executes a command on a given object locally in a device server. Memory
freeing must be done with free() and not with dev_xdrfree().

With the extended functionality of dev_putget and dev_put the function should
be used only to access objects which are not exported.

11.4. C LIBRARY 143

To access internal exported devices the unified interface must be used, to avoid
access and security problems in the coming releases.

ds__create()

long ds__create (name, ds_class, ds_ptr, error)

char *name; /* device name */

DevServerClass ds_class; /* class of the object */

DevServer *ds_ptr; /* returned pointer to the object */
long *error; /* error */

Ds_create() creates a new device server object of the class ds_class and will re-
turn a pointer on the object. Before creating the object (DevMethodCreate :
obj_create(3x)) the class and all its superclasses are checked to see if they have
been initialised. If not, then the DevMethodClasslnitialise (class_init(3x)) is called
for each uninitialised class.

ds__destroy()

long ds__destroy (ds, error)
DevServer ds; /* object pointer */
long *error; /* error */

Ds__destroy() searches for a destroy method (DevMethodDestroy) in the object
class. If no destroy method is implemented in the object class, its superclasses are
searched. Arriving at the end of the class tree, the destroy method of the general
device server class will be executed.

The general destroy method will free the object correctly only, if no memory al-
location was done for object fields outside the DevServerPart structure of the
object. The device name, as a field of DevServerPart will be freed correctly bye the
general device server class destroy method.

Also exported objects can be destroyed. They will be deleted from the list of ex-
ported devices and all client accesses will be stopped.

dev_export()

long dev_export (name, ds, error)

char *name ; /* device name x/
DevServer ds; /* object pointer */
long *error; /* error */

Dev_export makes devices visible for device server clients. All necessary connection
information for a dev_import() call will be stored in a database table. Moreover
the exported devices are added to the device server’s global list of exported devices.
Dev_export is installed as a method in the DeviceServerClass and accessible by the
name DevMethodDevExport.

ds__method finder()

DevMethodFunction ds__method_finder (ds, method)
DevServer ds; /* *x/
DevMethod method; /* x/

Ds__method_finder() searches for a method in the class hierarchy of the object ds
and returns a pointer to the method function. If the method was not found in the

144 CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

object‘s class, the search continues in all its superclasses up to the general device
server class.

If the method is not implemented the method finder takes DRASTIC action and
exits. This has been included in the specification to guarantee that on returning
from the method finder the method can be directly executed.

ds__method_search()

long ds__method_search (ds_class, method, function_ptr)

DevServerClass ds_class; /* class pointer */
DevMethod method; /* method to search for */
DevMethodFunction xfunction_ptr; /* returned pointer to the

method function */

Ds__method_search() searches for a method in the class specified. It returns the
pointer to the method function if the requested method was found in the class. If
no such method was specified the status DS_ZNOTOK is returned.

ds__sverun()

long ds__svcrun (error)
long *error; /* error x/

Ds_svcrun() supports the checking of pending RPC requests to the device server
on all open sockets. If requests are available on file descriptors (sockets), the next
pending request for every descriptor will be executed and ds__svcrun() will return
afterwards. If no commands are pending on any descriptor ds__svcrun() should
return after 10ms.

11.4.4 General Purpose Functions
dev_printerror_no()

void dev_printerror_no (mode, comment, dev_errno)
DevShort mode; /* indicates, how to handle the
error message bufferx/
char *comment ; /* comment on error */
long dev_errno; /* error */

If a message service is imported, all error messages are sent to an error file, on the
NETHOST, called :

NETHOST: /DSHOME/api/error/hostname_program-number

NETHOST = device server system host.
DSHOME = device server system directory on NETHOST.
hostname = name of the host where the service is installed.

prog_number = program number of the registered service.

If no message service is imported, all error messages are sent to stderr and printed
on the terminal.

The mode parameter indicates, how to handle the error message buffer. Single
messages can only be 256 characters long. To printout longer messages, short strings
can be buffered and printed later as a text.

e WRITE: Writes error message to buffer.

e SEND: Adds the last error message to the buffer, sends the buffer contents to
an output device and clears the buffer.

11.4. C LIBRARY 145

e CLEAR: Clears the message buffer from all stored messages.

dev_error_str()

char *dev_error_str (dev_errno)
long dev_errno; /* error */

Dev_error_str() returns the error string for a given error number. It first checks to
see if the error is negative. If so it returns an standard error message (negative
errors are not supported). Then it checks if the error is one of the kernel errors
(e.g. NETHOST not defined, RPC timeout etc.) and returns a corresponding
error message. Then it checks to see if a dynamic error message was returned
by the last dev_put_get(), dev_put() or dev_putget_asyn() call, if so it returns this
error message. If none of the above are true it searches the TACO database for the
(static) error string. If an appropriate error string cannot be found in the data base,
dev_error_str() returns a string, indicating the failure. dev_error_str() allocates
memory for the returned error string everytime using malloc(), it is the
client’s responsibility to free this memory using free()!.

dev_error_push()

void dev_error_push (char *error_string);

Dev_error_push is a server side call for generating dynamic error strings. If called
by the server while executing a dev_putget() it will make a copy of the error string
and transmit it back to the client. The client can recover the error string by calling
dev_error_str() immediately after the return of the dev_putget() call in question.
Note if a new call to dev_putget() is made the error string returned by the previous
call(s) is lost. Dev_error_push() can be called multiple times to stack errors if
necessary e.g. to return errors from multiple nested calls.

Dev_error_push() is available only from DSAPI version V8.18 and onwards.

dev_printdebug()

void dev_printdebug (debug_bits, fmt, [a0], [all,)
long debug_bits; /* debug flags */
char *fmt ; /* A printf(3S) like format string */
double a0, al, ...; /* variables to be printed */

Dev_printdebug sends the debug information if the specified debug_bits are set.
Possible debug-bits (debug flags) are:

#define DBG_TRACE 0x1
#define DBG_ERROR 0x2
#define DBG_INTERRUPT 0x4
#define DBG_TIME 0x8
#define DBG_WAIT 0x10
#define DBG_EXCEPT 0x20
#define DBG_SYNC 0x40
#define DBG_HARDWARE 0x80
#define DBG_STARTUP 0x100
#define DBG_DEV_SVR_CLASS 0x200
#define DBG_API 0x400

Lthis is a common source of memory leaks in TACO clients

146 CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

#define DBG_COMMANDS 0x800
#define DBG_METHODS 0x1000
#define DBG_STARTUP 0x100
#define DBG_DEV_SVR_CLASS 0x200
#define DBG_API 0x400
#define DBG_COMMANDS 0x800
#define DBG_METHODS 0x1000
#define DBG_SEC 0x2000
#define DBG_ASYNCH 0x4000

If a message service is imported, debug messages are sent to a named pipe, on the
NETHOST, called :

NETHOST: /DSHOME/api/pipe/hostname_program-number

NETHOST = device server system host.
DSHOME = device server system directory on NETHOST.
hostname = name of the host where the service is installed.

prog_number = program number of the registered service.

If no message service is imported, debug messages are sent to stdout and printed
on the terminal.

11.5. XDR TYPES 147

11.5 XDR types

All DSAPI types are implemented as XDR types. In order to prevent having to
implement too many XDR types (a problem for generic programs e.g. xdevmenu)
a set of kernel types has been defined.? Servers should use ONLY these types as
input and output arguments.

11.5.1 Kernel Types

The DSAPI kernel XDR types are described below. They include all simple C types,
variable length arrays of simple C types and a few DSAPI specific types. Each type
is characterised by a defined symbol (needed by dev_putget () and dev_xdrfree()),
a C type and an XDR routine.

11.5.2 Simple C Types

The following simple C types are implemented as part of the DSAPT kernel :

1. D_VOID_TYPE

typedef void DevVoid

2. D_CHAR_TYPE
typedef char DevChar

3. D_BOOLEAN_TYPE

typedef char DevBoolean

4. D_USHORT_TYPE
typedef u_short DevUShort

5. D_SHORT_TYPE
typedef short DevShort

6. D_USLONG_TYPE

typedef u_long DevULong

7. D_LONG_TYPE
typedef long DevLong

8. D_FLOAT_TYPE
typedef float DevFloat

9. D_DOUBLE_TYPE
typedef double DevDouble

10. D_STRING_TYPE

typedef char* DevString

2in the past new types were added by device server programmer’s as they needed them; this
led to a proliferation of exotic types which was difficult to maintain and which needed to be
implemented by clients

148

11.5.3 Combinations of Simple Types

CHAPTER 11. DSAPI

BY J.MEYER AND A.GOTZ

A number of combinations of simple C types are supported as part of the DSAPI
kernel types :

1.

11.5.4 Variable Length Arrays

D_INT_FLOAT_TYPE

typedef struct {
long state;
float value;
} DevIntFloat;

. D_FLOAT_READPOINT

typedef struct {
float set;
float read;

} DevFloatReadPoint;

D_STATE_FLOAT_READPOINT

typedef struct {
short state;
float set;
float;

} DevStateFloatReadPoint;

. D_LONG_READPOINT

typedef struct {
long set;
long read;

} DevLongReadPoint;

D_DOUBLE_READPOINT

typedef struct {
double set;
double read;

} DevDoubleReadPoint;

The second major set of XDR types implemented by DSAPI are the so-called vari-
able length arrays. Variable length arrays are arrays which have a length field
specifying the number of elements in the array. They are described by a C struc-
ture consisting of two fields - an unsigned integer length field and a sequence field.
The sequence is a pointer to an array of of elements of the required type. The C

definition is of variable length arrays is :

struct { u_int length; <Type> *sequence} Dev<Type>VarArr;

where <Type> is the required type.
The following variable length arrays are implemented as part of the DSAPI kernel

types :

11.5. XDR TYPES 149

1. D_VAR_CHARARR

typedef struct {
u_int length;
char *sequence;
} DevVarCharArray;

2. D_VAR_STRINGARR

typedef struct {
u_int length;
DevString *sequence;
} DevVarStringArray;

3. D_VAR_USHORTARR

typedef struct {
u_int length;
u_short *sequence;
} DevVarUShortArray;

4. D_VAR_SHORTARR

typedef struct {
u_int length;
short *sequence;
} DevVarShortArray;

5. D_VAR_ULONGARR

typedef struct {
u_int length;
u_long *sequence;
} DevVarULongArray;

6. D_VAR_LONGARR

typedef struct {
u_int length;
long *sequence;
} DevVarLongArray;

7. D_VAR_FLOATARR

typedef struct {
u_int length;
float *sequence;
} DevVarFloatArray;

8. D_VAR_DOUBLEARR

typedef struct {
u_int length;
double *sequence;
} DevVarDoubleArray;

150 CHAPTER 11. DSAPI BY J.MEYER AND A.GOTZ

9. D_VAR_FRPARR

typedef struct {
u_int length;
DevFloatReadPoint *sequence;
} DevVarFloatReadPointArray;

10. D_VAR_SFRPARR

typedef struct {
u_int length;
DevStateFloatReadPoint *sequence;
} DevVarStateFloatReadPointArray;

11. D_VAR_LRPARR

typedef struct {
u_int length;
DevLongReadPoint *sequence;
} DevVarLongReadPointArray;

11.5.5 Exotic Types

All other XDR types which are supported by the DSAPI are considered as “exotic”
types and the programmer must refer to the relevant Device Server User Guide
and/or xdr include files. In the future device server programmer’s are urged to
stick to the kernel types and where possible provide equivalent functions for old
classes which use standard kernel types (e.g. using command overloading).

11.6. CHANGES 151

11.6 Changes

11.6.1 Version 8.0

Version 8 introduces support for TANGO. TANGO? is the new version of TACO
based on CORBA (instead of RPC) and with support for C++ and Java. The
TANGO interface allows TACO clients to do a dev_putget() call on a TANGO
device in a transparent manner - simply add ”tango:” in front of the device name
to switch protocol from RPC to CORBA. To use the TACO-TANGO interface
link your C or C++ program with the C++ linker and the libdsapi++ library (or
libdsapig++ if you are using GNU).

11.6.2 Version 7.0

Version 7 introduces events. Events use the same mechanism as the asynchronous
call for dispatching. They allow servers to be programmed to generate true asyn-
chronous events to clients.

11.6.3 Version 6.0

The main changes in the new version are the inclusion of true asynchronous dev_putget ()
calls - dev_putget_asyn() and related calls (cf. “C library reference” above).

11.6.4 Version 5.1

The main changes to this version were the following - support for multi-nethost,
ports to Windows (95 and NT), Linux and VxWorks.

11.6.5 Version 4.1

The main changes here were security was implemented, and port to Ultra C for
059.

11.6.6 Version 3.37
An Asynchronous dev_put()

The new function dev_put_asyn() is similar to the ancient dev_put(). The only
difference is, that dev_put_asyn() sends a request to execute a command to a de-
vice server and returns immediately when the command was received. The only
errors which can be returned by dev_put_asyn() are errors during the sending of the
command. A correct return status only indicates that the command execution was
started. No failures during command execution can be reported back to
the client.

long dev_put_asyn (ds, cmd, argin, argin_type, error)

devserver ds; /* client handle to the device */
long cmd ; /* command to execute */
DevArgument argin; /* pointer to input arguments */
DevType argin_type; /* input argument data type */
long *xerror; /* error */

3cf. http://www.esrf.fr/tango

152 CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

Destroying Objects

With the function ds__destroy() a proper interface was created to destroy objects
in a device server. Ds__destroy() searches for a destroy method (DevMethodDe-
stroy) in the object class. If no destroy method is implemented in the object class,
its superclasses are searched. Arriving at the end of the class tree, the destroy
method of the general device server class will be executed.

The general destroy method will free the object correctly only, if no memory al-
location was done for object fields outside the DevServerPart structure of the
object. The device name, as a field of DevServerPart will be freed correctly bye the
general device server class destroy method.

Also exported objects can be destroyed. They will be deleted from the list of
exported devices and all client accesses will be stopped.

long ds__destroy (ds, error)
DevServer ds; /* Pointer to the object */
long *error; /* error */

Attention:

To destroy an exported object, ds-_destroy() must be used. Executing only the
destroy method will not delete the device from the list of exported devices. With
the next client access a nice core will be generated.

Accessing Process Internal Devices

Until version 3.37 the only possibility to access devices internally was the function
dev_cmd(). That was not enough to handle the coming security features. Out of
this reason the functionality of the functions:

dev_import()

dev_putget()
dev_put()
dev free()

was enlarged. They can be used now on all exported devices, remote via RPCs or
internally just via function calls. Dev_import() will detect automatically whether
a device is internal and will avoid all overhang of the remote access on the client
handle. Also memory treatment was unified. All outgoing arguments (remote or
intern) are allocated by XDR. Dev_xdrfree() must be used to free the memory.
Attention:

This unified interface for device access works on all exported devices. Objects
which are not exported, can be accessed only be dev_cmd().

To access process internal devices the unified interface must be used to avoid access
and security problems in the coming releases.

Dynamic Memory Allocation

The general structures handling exported devices and client connections to the
devices

typedef struct _DevServerSec {

long security_key;
long access_right;
long single_user_flag;

} DevServerSec;

11.6. CHANGES 153

typedef struct _DevServerAccess {

DevServer ds;

char export_name[80] ;
long export_status;
long export_counter;
long single_user_flag;
long max_no_of_clients;
DevServerSec *client_access;

} DevServerDevices;

DevServerDevices xdevices /* Exported devices; in DevServer.c */

are no longer static arrays. The are allocated dynamically in data blocks. The
BLOCK_SIZE is defined in ApiP.h and set to 5 structures per data block. To avoid
the growth of a device server, all client connections should be freed correctly.

The Device ID

Every device in a server is referenced by a device ID. The ID is send with every
client call to identify the device and is hidden to the user in the client handle to
the device. Up to version 3.37 the device ID was a simple number. Indicating the
position of the device in the list of exported devices. Now the device ID was split
up into several information fields.

| 31 | 30 20 | 19 12 | 11 0|

|- Position in the
list of exported
devices.

- Position in the
list of client
connections to the
device.

- Export counter

- Local access flag

The export counter field becomes interesting only if you destroy an exported
object and reexport another or the same object again. In the case of a destroyed
object, the export counter is increased and all client connections on the old value
are no longer valid. A newly exported device might take the place in the list of
exported devices afterwards.

The Local access flag is set if the dev_import() detects a local device.

The split up of the device ID limits a device server to the following values:

4096
256

Maximum number of exported devices

Maximum number of client connections per device

154 CHAPTER 11. DSAPI BY JMEYER AND A.GOTZ

Chapter 12

Database guide - ndbm
by E.Taurel

12.1 Introduction

The TACO static database is used to keep three kinds of information about device
servers:

1. Device server configuration data called resources.
2. Device and pseudo device information (location, type...).
3. Security data.

Resources are used to configure device server without recompilation. Device in-
formation allows application software to build network connections with devices
through the device server API. Pseudo device information allow easier debugging
session. Security data are used by the device server API to check if a device request
is authorized. The database is filled up with a graphical interface called greta or
with the contents of resource file. A C library allows software to get/store data
from/into this database. A large set of utilities allows a simple management of this
database.

The database itself is the ndbm package which is part of the UNIX operating system.
It is a file oriented database.

TACO is a distributed control system. This is also true for the static database. The
C library get/store data from/into the database through a database server across
the network with RPC’s. This is hidden to the user and implemented in the C
library functions.

12.2 Device and resource definition

12.2.1 The devices list

Within a TACO control system, every device must have a name build with the
following syntax:

DOMAIN/FAMILY /MEMBER

For example, the first attenuator device name on the ESRF beam line behind inser-
tion device 12 must be ID12/att/1 because the device domain is ID12, the device

155

156 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

family is att and the member is 1. A device name must be unique in a TACO
control system.

To identify every device server instance, a device server is started with a per-
sonal name which is different for each instance. For example, a device server for
PerkinElmer vacuum pump called Perkin will be started with the personal name
ID16 when it will drive pump installed on ESRF beam line ID16 and will be started
with the personal name ID11 when it will drive pumps on the ESRF beam line
ID11. The device list must be entered with the following format :

device server process name/personal name/device: device names list
device is a key word allowing the software to know that it is a device list. Example:

BlValves/ID10/device: ID10/rv/1, ID10/rv/2 \
ID10/rv/3

In this case, the device server process name is BlValves, the personal name is ID10
and it drives three devices. The device server must be started on the command line
as BlValves ID10.

In the device list, each device name must be separated by a comma. If the list
continue on the next line, use the character at the end of the line. All devices
driven by the same device server must be defined in only one device list.

A device name must not have more than 23 characters with a family and mem-
ber name limited to 19 characters. A device server process name is limited to 23
characters and the personal name to 11 characters.

12.2.2 Resource definition

A resource is defined with the following syntax:

device name/resource name: resource value
Example
sy/ps-b/1/fbus_channel: 2
sy/ps-b/1/upper_limit: 456.5
sy/ps-b/1/fbus_desc: b0
sy/ps-b/1/error_str: "G64 crate out of order"
sy/ps-b/1/linear_coeff: 8.123, 9.18, 10.78 \

7.32, 101.78, 27.2

Resource name must not exceed 23 characters. Resource value are stored in the
database as ASCII characters and converted to the requested type when they are
returned to the caller. The available types are :

¢ D BOOLEAN_TYPE
e D SHORT_TYPE

¢ D.LONG_TYPE

e D FLOAT_TYPE

e D DOUBLE_TYPE
e D STRING_.TYPE

e D_VAR_.CHARARR
e D_VAR_SHORTARR

12.3. GRETA 157

¢ D_VAR.LONGARR
e D_VAR_FLOATARR
¢ D_VAR_STRINGARR

For the D_.BOOLEAN_TYPE, a resource value can be set in the resource file to 0,
1, False, True, Off, On. It is possible to define resources which are arrays (resource
linear_coeff in the previous example). In this case, each array element are separated
by the , character. To continue the array on the next line, use the character at
the end of the line. It is also possible to give a resource value as a hexadecimal
number if the resource value begins with the Ox characters (C syntax) and if it is
converted to a numerical type. If the resource is a string with spaces, the string
must be enclosed with the ” characters.

It is also possible to define resources for non physical devices and to use them to
configure any software. A resource definition can look like

class/tutu/titi/tata: "When will we eat?"

and be retrieved by a C program. In this case, the second and third fields length is
limited to 19 characters.
To delete resources from a resource file, init the resource value with the character

%.
ID10/att/1/upper_limit: %

will erase the resource upper_limit for the device ID10/att/1 from the database.

12.2.3 Domain names and NDBM files

The domain name is the device or resource name first field. In a TACO control
system, domain names are free. Nevertheles, data for each domain are stored in
two different files and the database server needs to know all the domain names
involved in a control system. This is done by the DBTABLES environment vari-
able. This variable is a list (comma separated) of all the domain used in the control
system.. It is recommended to have the CLASS, CMDS, ERROR, SYS and
SEC domains to get all the device server features running correctly. A NAMES
and PS_NAMES pseudo domain names are automatically added to the list of the
user defined domain names.

The SEC domain is reserved for the security aspect of the device server model. All
the update, insert, delete from this domain are protected by a password.

The SYS domain is a generic domain for resources and devices which are part of
the beam line control system itself (data collector resources...)

The CMDS and ERROR domain are used to store error messages and commands
strings.

Files used by the NDBM software to keep data (two files per domain) are stored in
a directory pointed to by the DBM_DIR environment variable software also needed
by the database server.

12.3 Greta

Greta (Graphical Resource Editor for TAco) is the graphical interface to the TACO
static database. This tool allows the user to retrieve, add, delete or update re-
sources, to add, delete update device list for a device server, to save/load data
to/from a file, to get device, server or database informations. For greta, all the
informations stored into the database are splitted into three parts which are :

158 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

1. The device list : All the entities defined as served by a device server
2. The server list : List of all device server defined in the database

3. The resource list : All the resources defined in the database including resources
which don’t belong to any device

12.3.1 The device window

To open a device window, click on File-Open device. A database device browsing
window is poped-up. Once a device is selected (by double click on the field name
or by pressing the filter button), pressing the open button or a double click on the
Member field will poped-up a device window.

The Informations part of the device window contains device information like device
server host, device server PID, device class... This sub-window is not editable. The
Resources sub-window displays all the resources defined for the selected device and is
editable. It is possible to update, delete, add device resource(s) in this sub-window.
The five window main buttons are :

e Update to update the database with the contents of the above sub-window.
A confirmation window is poped-up

e Cancel to close the window without any database change

e Delete to delete the device from database. A window is poped up in order
to give the user the choice to delete device with or without its resources.

e Ping to ping the device. The device answers to such request only if the device
server is linked with DSAPT release 5.11 and above.

e (Re)start to start or restart the device server in charge of the selected device.
This feature is available only for device served by a device server linked with
database software release 5.0 and above and also if the ”starter” device server
release 2.0 or above is running on the host where the device server is running.
If it is not the case, an alarm window is poped_up. In all cases, a confirmation
window is poped up.

Under the window File button, it is possible to :
e Print window content
e Save window content to a file

e Close the window

Under the Edit button, the user will find the classical edit features plus the ”insert
device resource” button. If some device resources are device name, by selecting this
device name and clicking in Edit-insert device resource, all the resources belonging
to the newly selected device will be added at the bottom of the Resources sub-
window. This feature is also possible by a click on the right mouse button when
the device name is selected.

It is possible to open up to 10 different device windows. The device name is displayed
in the window title.

12.3. GRETA 159

Device id11/pen/01

iid11/pen/01/ass_pir: 4
id11/penf01/ce_type: 2
id11/penf01/controller: ID11/VGCA
id11/penf01/debug: 0
id11/pen/01/file_cal: PEN1_CAL.TAB
id11/pen/01/filter: 4
id11/penf01/ident_relayl: D
id11/pen/0lfident_relay2: @
id11/penf01/indice: 2
id11/penf01/interlock: 0
id11/penf01/max_current: 1.0E-05
id11/penf01/nb_relay: 1
id11/pen/01/pen_calibration: 1
id11/penf01/relay _conf: 0
id11/penf01{rom_wversion: 2.04
id11/penf01/set_relayl: 5.0E-06
id11/penf01/set_relay?2: 5.0E-06
id11/penf01/stat_relayl: 0
id11/pen/01/stat_relay2: 0
id11/penf01/type: PEN
id11/pen/01/ud_command_list: DevUpdate

e

= B B B ==

Figure 12.1: Greta device window

160 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

Server blvalves/id11

blvalvessid11/device : id11/rv/0,id11/r/2,id11/m/3,id11/mvid
id1 1/rv5.id11/me/6

iid11/rv/0/channum: 0
id11/rvi0/ud_command_list: DevState
id11/rvf0/ud_poll_interval: B0

id11/rv/2/channum: 2
id11/rvi2/ud_command_list: DevState
id11/rvi2/ud_poll_interval: B0

id11/rv/3/channum: 3
id11/rv/3/ud_command_list: DevState
id11/rvf3/ud_poll_interval: B0

id11/rv/d/channum: 4
id11/rvid/ud_command_list: DevState
id11/rvidfud_poll_interval: B0

id11/rvw/S/channum: 5

Figure 12.2: Greta server window

12.3. GRETA 161

12.3.2 The server window

To open a server window, click on File-Open server. A database server browsing
window is poped-up. Once a server is selected (by double click on the field name
or by pressing the filter button), pressing the open button or a double click on the
Personal name field will poped-up a server window.

The Informations part of the device window contains server informations like devices
number defined for this server, device name... This sub-window is not editable.
The ”In charge device list” sub-window displays the list of device(s) defined for
this server. This list follows the syntax described in the device list chapter. This
sub-window is editable and the device list can be modified. The Resources sub-
window displays all the resources belonging to each server device and is editable.
It is possible to update, delete, add device resource(s) in this sub-window. The five
window main buttons are :

e Update to update the database with the contents of the two editable sub-
windows. A confirmation window is poped-up

e Cancel to close the server window without any database change

e Unreg to unregister the server from the database. To unregister a server
from the database means to mark all its devices as non-exported (unable to
answer to network request). A confirmation window is poped-up.

e Delete to delete the server from database. A window is poped up in order
to give the user the choice to delete the server with or without all its devices
resources.

o (Re)start to restart the device server. This feature is available only for
device server linked with database software release 5.0 and above and also if
the ”starter” device server release 2.0 or above is running on the host where
the selected device server is running. If it is not the case, an alarm window is
poped_up. In all cases, a confirmation window is poped up.

Under the window File button, it is possible to :
e Print window content
e Save window content to a file
e Close the window

Under the Edit button, the user will find the classical edit features plus the ”insert
device resource” button. If some device resources are device name, by selecting this
device name and clicking in Edit-insert device resource, all the resources belonging
to the newly selected device will be added at the bottom of the Resources sub-
window. This feature is also possible by a click on the right mouse button when
the device name is selected.

It is possible to open up to 10 different server windows. The server name is displayed
in the window title.

12.3.3 The resource window

To open a resource window, click on File-Open resources. A database resource
browsing window is poped-up. Once a resource is selected (by double click on the
field name or by pressing the filter button), pressing the open button or a double
click on the Name field will poped-up a server window. It is always proposed by
greta to use the wildcard * as Member and/or Name field.

162 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

Resources matching cmds/5/% /%

‘emds/5/16/1: DevSensiCamExpose
cmds/SHA6/2: DevSensiCamStop
cmdsfH16/3: DevSensiCamRead
cmdsfH16/4: DevSensiCamLoadLUT
cmdsfHA7A: DevSensiCamStart
cmds/SA72: DevSensiCamStop
cmds/HSA713: DevSensiCamRead
cmds/S7/4: Dev3ensiCamLoadLUT
cemds/H75: DevSensiCamExposure
cmds/H7/6: Dev3ensiCamR Ol
cmds/S/3/1: DevSetOffset
cmds/Hi32: DevReadOffset
cmds/3/3: DevReadRange
cmds/Sfdil: DevSerWriteString
cmds/Hidi2: DevSerWriteChar
cmds/Sidi3: DevSerReadString
cmds/Sidid: DevSerReadChar
cmds/Siain: DevSerSetParameter

Cancel

Figure 12.3: Greta resource window

12.3. GRETA 163

[~ Newsewer |

Figure 12.4: Greta new server window

The Resources sub-window displays all the resources selected This sub-window is
editable. It is possible to update, delete, add device resource(s) in this sub-window.
The two window main buttons are :

e Update to update the database with the contents of the above sub-window.
A confirmation window is poped-up

e Cancel to close the window without any database change
Under the window File button, it is possible to :

e Print window content

e Save window content to a file

e Close the window

Under the Edit button, the user will find the classical edit features.
It is possible to open up to 10 different resources windows.

12.3.4 The new server window

The new server window allows a user to create new device server within the database.
This window is poped-up after a click on File-New server. The user must fill in the
server name field with the device server name and the personal name field with the
argument used to start the device server. The device list must also be filled in as
described in the device list chapter of this documentation. When these three fields
are filled in, clicking on OK will register the server in the database. To define server
device(s) resources, open a server window as explained earlier.

12.3.5 The load file window

Once a file as been selected in the file selection window, the file contents is displayed
in a separate window. This window is not editable. The two window main buttons
are :

164 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

Jtmp/cmdsh.res

Figure 12.5: Greta file window

12.4. RESOURCE FILE 165

e Update to update the database with the contents of the above sub-window.

e Cancel to close the window without any database change

12.3.6 The Option menu
Four options are implemented. These options are :

e Server displayed with class resources. This option deals only with server
window. When this option is chosen, class resources are also displayed in the
server window Resources part. Class resources are all the resources with the
following syntax :

— class/server name/* /*

— class/device_class/*/*

e Display all embedded server in a process. This option is usefull when
several device servers are embedded in one process. If such a process is selected
in the server selection window, device list and device resources for all the server
embedded in the process will be displayed in the server window.

e Display device data collector info. If this option is set, a forth part
is added to the device window. This sub-window (not editable) is entitled
”"DC/HDB informations”. It displays data related to the device and the TACO
data collector. If the device is registered in the data collector, the command
used for polling is displayed as well as the time needed to execute the last
command. The polling period is also displayed and the time spent since the
last command result update. Some informations about the poller process in
charge of the device are also displayed (host where the poller is running, its
PID...)

e Display device history database info. If this option is set, a forth part
is added to the device window. This sub-window is entitled ”DC/HDB infor-
mations”. It displays the storage mode chosen to store device data into HDB
(History DataBase) and the last nine records value with their record dates.

If the last two options are selected, DC and HDB informations are displayed in the
same sub-window of the device window.

12.3.7 Other features

Some miscellaneous features are also incorporated into greta.

Global-Informations : Display in greta main window general database informations.
These informations are the number of devices defined in the database, the number
of exported devices for each device’s domain, the pseudo-devices number and the
number of resources for each domain.

Help—On version : Display a window with the greta software release number
File-Print : Print the greta main window

File-Exit : Exit the application

12.4 Resource file

A resource file is the way to store resource and device information into the static
database. The user writes its resource file and updates the database with one of
the database utilities called db_update. Then a C program (a device server or any
other C program) is able to retrieve these resources with a library call and in the

166 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

case of a device server, it is also able to mark its devices as exported to the rest of
the world (ready to accept requests).
A resource file is divided in two parts which are:

e The list of devices driven by a particular instance of a device server. The
same device server can run on several computers. This list allows the system
to know that the this particular instance of the device server drive this list of
devices.

e Resources definition

A resource file must have a suffix .res. Any line beginning with the # character
will be considered as a comment line. It is not allowed to begin comment at the
middle of a line. Blank lines are allowed. All the resource files must be stored
in directory and sub-directories under a defined path which is known to the static
database utilities by the RES_BASE_DIR, environment variable. On most of the
ESRF beam line control system, the resource files base directory is dserver login
directory/dbase/res. For test purpose, another resource database is running on
margaux.

12.5 Utilities

These utilities are commands run from the UNIX command line. They can be
grouped in three different parts which are:

e Database administration commands
e Database user commands
e Security commands

These utilities are briefly describe below. Man pages are available to get complete
information.

12.6 Database administration commands

12.6.1 db_fillup

db_fillup <data_source>

This command creates the database into memory and load it with resource files
contents or with a database backup file according to the data_source parameter.
This command directly access the ndbm files (not via the server) and therefore needs
the DBM_DIR and DBTABLES environment variables. To hide these environment
variables, this command is alittle script which set these environment variable and
then, call the real command with the argument given by the user. The setting of
these environment variables is done by a file called dbm_env. Example :

db_fillup O

12.6.2 db_info

db_info

This command displays the total number of devices and resources defined in the
database as well as the number of devices and resources for each domain. Example

12.7. DATABASE USER COMMANDS 167

$db_info
DEVICE STATISTICS

90 devices are defined in database
84 of the defined devices are actually exported:
0 for the CLASS domain
6 for the SYS domain
0 for the ERROR domain
0 for the CMDS domain
0 for the SEC domain
78 for the ID16 domain
12 pseudo devices are defined in database

RESOURCE STATISTICS

4126 resources are defined in database:
42 resources for the CLASS domain
28 resources for the SYS domain
348 resources for the ERROR domain
651 resources for the CMDS domain
0 resources for the SEC domain
3057 resources for the ID16 domain

12.6.3 db_read

db_read <domain name>

This function displays all the data recorded in the database for a specific domain.
This command directly access the ndbm files (not via the server) and therefore needs
the DBM_DIR and DBTABLES environment variables. To hide these environment
variables, this command is alittle script which set these environment variable and
then, call the real command with the argument given by the user. The setting of
these environment variables is done by a file called dbm_env. Example :

$db_read class

CLASS: relayserver|id16|unittypell|: icv196
CLASS: dcl|1|host|1|: inelil

CLASS: dcl|1|max_calll|1|: 1000

CLASS: dc|1|36_default|1]|: inell

CLASS: dcl|inell|dev_number|1]|: 100

CLASS: dclinelillcellar_number|1]: 50

CLASS: dclinell|path|1l]|: /users/b/dserver/system
CLASS: dclinell|login|1|: dserver

CLASS: dc|server_nbl|inell_rd|1]|: 2

12.7 Database user commands

12.7.1 db_update
db_update <file>

This command allows a user to load into the database all the resources and devices
list defined a resource file. It will insert new resources or update already existing
ones. It will also updates or insert device information. Example :

db_update FluoScreen_ID16.res

168 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

12.7.2 db_devres

db_devres <device_name>

db_devres displays all the resources belonging to a device. Example :

$ db_devres id16/att/1
blockl : ID16/atti_b/1
number_of_blocks : 3
block3 : ID16/attl_b/3
unitnumber : 1

block2 : ID16/attl_b/2
fluorscreen : NO
attenuatornum : 1

12.7.3 db_devinfo

db_devinfo <device_name>

db_devinfo displays device (or pseudo device) information. For device, these infor-
mation are the host name where the device server in charge of the device is running,
the device server process identifier and the device server name. For pseudo device,
it is just the PID and the host of the process which created the pseudo device.
Example (for a real device) :

$ db_devinfo id16/att/1

Device id16/att/1 belongs to class : attenuatorClass

It is monitored by the server : attenuator/id16 version 1

The device server process name is : attenuator

This process is running on the computer : id161 with process ID : 117

Example (for a pseudo device) :

$ db_devinfo id16/bidon/1
Device id16/bidon/1 is a pseudo device
It is created by a process with PID : 234 running on host : inell

12.7.4 db_servinfo
db_servinfo <full device server name>

This command displays the device list for a specific device server. The device
server is specified by its full device server name which is the device server pro-
cess name/personal name. For device server with several embedded classes, device
belonging to each class wil be displayed. Example :

$ db_servinfo attenuator/id16
Device number 1 : id16/att/1 exported from host id161
The device server is part of the process : attenuator with PID : 45

12.7.5 db_devdel

db_devdel [-r] <device_name>

This command delete a device (or a pseudo device) and all its resources from the
database. The -r option prevents the command to also remove all the device re-
sources. Example :

$ db_devdel idi12/att/1

12.8. SECURITY COMMANDS 169

12.7.6 db_resdel

db_resdel <device name/resource name>

This command deletes a resource from the database. Example :

$ db_resdel fe/id/10/io_word

12.7.7 db_servdel

db_servdel [-r] <full device server name>
This command deletes all the device(s) belonging to a device server from the

database. It also deletes all the resources belonging to these devices. The -r option
prevents the command to delete resources. Example :

$ db_servdel attenuator/id16

12.7.8 db_servunreg

db_servunreg <full device server name>

This command unregisters all the device(s) belonging to a device server from the
database. After this command, all the devices are not exported anymore. Example

$ db_servunreg attenuator/id16

12.8 Security commands

12.8.1 dbm_sec_passwd

dbm_sec_passwd

It is possible to protect security data (in the SEC domain) with a password. This
password will be asked for each insert/update into the SEC domain. dbm_sec_passwd
is the command which allows to define or change the password.

12.8.2 dbm_sec_objinfo

dbm_sec_objinfo <obj_name>

dbm _sec_objinfo displays security data for a given object. A object can be a domain,
a family or a device.

12.8.3 dbm_sec_userinfo

dbm_sec_userinfo [-u user_name] [-g group_name]

sec_userinfo returns all accesses specified for a user and (or) for a group.

170 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

12.9 The C library

A C library with 39 calls has been written which allows a C program to

e retrieve, update, insert, delete resources.

e retrieve device list, mark device as exported, return device information.

e retrieve all or part of the exported devices.

e register and unregister pseudo devices

e browse the database

e retrieve command code from command name
These calls are briefly described here. Man pages are available for all of them to
get complete information. The library (client part of RPC calls) is available for
HP-UX, Solaris, OS-9 and Linux.
12.10 Resource oriented calls
All the following calls are linked to resources

12.10.1 db_getresource()

int db_getresource (dev_name, res, res_num, error)

char *dev_name; /* The device name */

Db_resource res; /* Array of res. name, type and pointer to store
resource value */

unsigned int res_num; /* Resource number */

long *error; /* Error */

This function retrieve resources from the database, convert them to the desired type
and store them at the right place.

12.10.2 db_putresource()

int db_putresource (dev_name, res, res_num, error)

char *dev_name; /* The device name */

db_resource *res; /* Array of res. name, type and pointer to
resource value */

unsigned int res_num; /* Resource number */

long *error; /* Error */

This function update already defined resource(s) or add new resource(s) if it (they)
does not exist. Resource files are not updated by this function. It is not possible to
update/insert resource belonging to the SEC domain.

12.10.3 db_delresource()

int db_delresource (dev_name, res_name, res_num, error)

char *dev_name; /* The device name */
char **res_name; /* Resource name(s) to be deleted. */
unsigned int res_num; /* Resource number */

long *error; /* Error */

12.11. EXPORTED DEVICE LIST ORIENTED CALLS 171

db_delresource allows a user to remove resources from the database. The resource
file where the resource was initially defined is not updated. It is not possible to
delete resource(s) from the SEC domain with this function.

12.11 Exported device list oriented calls

The two following calls are used to get information on which devices are available
for request in the control system.

12.11.1 db_getdevexp()

int db_getdevexp (filter, tab, dev_num, error)

char xfilter; /* The filter to select exported devices */
char ***tab; /* Exported devices name */

unsigned int *dev_num; /* Exported devices number */

long *error; /* Error */

This function allows a user to get the name of exported (and then ready to accept
command) devices. With the filter parameter, it is possible to limit the devices
name returned by the function. This function is not available for OS-9 client.

12.11.2 db_freedevexp()

int db_freedevexp (ptr)
char **ptr; /* Exported devices name array*/

The previous function can return a lot of device names and allocate memory to
store them. This call is a local call and frees all the memory allocated by the
db_getdevexp function.

12.12 Device oriented calls

The following functions are device oriented.

12.12.1 db_getdevlist()

int db_getdevlist (ds_full_name, dev_tab, dev_num, error)

char *ds_full_name; /* Full device server name (device server
process name/personal name) */

char **x*xdev_tab; /* Device name(s) array */

unsigned int *dev_num; /* Device number */

long *error; /* Error */

db_getdevlist returns to the caller the devices list for the device server with the full
device server name ds_full_name.

12.12.2 db_dev_import()

int db_dev_import (name, tab, dev_num, error)

char **name ; /* Device(s) name to be imported */
Db_devinf_imp *tab; /* RPC device(s) parameters array */
unsigned int dev_num; /* Device number */

long *xerror; /* Error x/

172 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

This function returns all the necessary parameters to build RPC connection between
a client and the device server in charge of a device. It allows to retrieve these RPC’s
information for several devices at the same time.

12.12.3 db_dev_export()

int db_dev_export (devexp, dev_num, error)

Db_devinf *tab; /* RPC device(s) parameters array */
unsigned int *dev_num; /* Device number */
long *error; /* Error */

This function stores into the database the network parameters for a device or a
group of devices. The network parameters are all the information needed by RPC
to build a connection between a client and the device server in charge of a device.

12.12.4 db_deviceinfo()

long db_deviceinfo (dev_name, devinfo, error)

char *dev_name; /* Device name */
db_devinfo_call *devinfo; /* Device informations */
long xerror; /* Error */

This function returns to the caller a structure with many device informations. These
informations are the name of the server in charge of the device, the host where it is
running, the device server program number, the device class...

db_deviceres()

long db_deviceres (dev_nb, dev_name_list, res_nb, res_list, error)

long dev_nb /* Number of device */

char **xdev_name_list; /* Device name list */

long res_nb; /* Number of resource(s) */
char **x*xres_list; /* Resource(s) list */

long *Xerror; /* Error */

This function returns to the caller the list of all resources for a list of devices. The re-
sources are returned as string(s) with the following syntax : ”device name/resource
name : resource value”.

12.12.5 db_devicedelete()

long db_devicedelete (dev_name, error)
char *dev_name; /* Device name */
long *xerror; /* Error */

This function deletes a device from the list of device registered in the database.

12.12.6 db_devicedeleteres()

long db_devicedeleteres (dev_nb, dev_name_list, error)

long dev_nb; /* Number of device */
char **xdev_name_list; /* Device name list */
db_error *error; /* Error */

This function deletes all the resources belonging to a list of devices from the
database.

12.13. SERVER ORIENTED CALLS 173

12.12.7 db_getpoller()

long db_getpoller (dev_name, poll, error)

char *dev_name; /* Device name */
db_poller *poll; /* Device poller info */
db_error *error; /* Error */

This function returns to the caller information about the device poller in charge of
a device. A poller is a process in charge of ”polling” the device in order to store
device command result into the TACO data collector. The poller informations are
the poller name, the host where it is running,....

12.13 Server oriented calls

The following functions deals with device server.

12.13.1 db_svc_unreg()

int db_svc_unreg (ds_full_name, error)

char *ds_full_name; /* Full device server name (dev. server process
name/personal name) */
long Xerror; /* Error */

db_svc_unreg mark all the devices driven by the device server with a full name
ds_full_name as not exported devices.

12.13.2 db_svc_check()

int db_svc_check (ds_full_name, h_name, p_num, v_num, error)

char **ds_full_name; /* Full device server name (dev. server
process name/personal name) */

char *h_name; /* Device server host name */

unsigned int *p_num; /* Device server program number */

unsigned int *v_num; /* Device server version number */

long *error; /* Error */

This function returns host name, program number and version number of the first
device found in the database for the device server with the full name ds_full_name.

12.13.3 db_servinfo()

long db_servinfo (ds_name, pers_name, s_info, error)

char *ds_name; /* Device server name */

char *pers_name; /* Device server personal name */
db_svcinfo_call *s_info; /* Server information */

long *error; /* Error */

This function returns miscellaneous informations for a device server started with a
personal name. These informations are the number and name of device served by
the server, the device server process name....

174 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

12.13.4 db_servdelete()

long db_servdelete (ds_name, pers_name, delres_flag, error)

char
char
long
long

*ds_name;
*pers_name;
delres_flag;
*error;

/* Device server name */

/* Device server personal name */

/* Delete device(s) resource flag */
/* Error x/

This function deletes a device server from the database and if needed, all the server

device resources.

12.13.5 db_servunreg()

long db_servunreg (ds_name, pers_name, error)

char
char
long

*ds_name;
*pers_name;
*error;

/* Device server name */
/* Device server personal name */
/* Error */

This function unregisters (mark device(s) as not exported) for all the device(s)
served by the device server ds_name started with the personal name pers_name.

12.14 Database browsing oriented calls

All the following 11 calls allows database browsing

12.14.1 db_getdevdomainlist()

long db_getdevdomainlist(domain_nb, domain_list, error)

long
char
long

*domain_nb;
*x*domain_list;
*error;

/*
/*
/*

The number of domain */
Domain name list */
Error */

This function returns to the caller a list of domain used for all devices defined in

the database.

12.14.2 db_getdevfamilylist()

long db_getdevfamilylist(domain, family_nb, family_list, error)

char
long
char
long

*domain;
*family_nb;
**xxfamily_list;
*error;

/*
/*
/*
/*

The domain name */

The number of families */
Family name list */

Error */

This function returns to the caller a list of families for all devices defined in the
database with the first field set to a given domain name.

12.14.3 db_getdevmemberlist()

long db_getdevmemberlist(domain, family, member_nb, member_list, error)

char
char
long
char
long

*domain;
*family;
*member_nb;
**x*xmember_list;
*error;

/*
/*
/*
/*
/*

The domain name */

The famiy name */

The number of members */
Member name list */
Error */

12.14. DATABASE BROWSING ORIENTED CALLS 175

This function returns to the caller a list of members for all devices defined in the
database with the first field name set to a given domain and the second field name
set to a given family.

12.14.4 db_getresdomainlist()

long db_getresdomainlist(domain_nb, domain_list, error)

long *domain_nb; /* The number of domain */
char **x*xdomain_list; /* Domain name list */
long *error; /* Error */

This function returns to the caller a list of domain used for all resources defined in
the database.

12.14.5 db_getresfamilylist()

long db_getresfamilylist(domain, family_nb, family_list, error)

char *domain; /* The domain name */

long xfamily_nb; /* The number of families */
char *x*family_list; /* Family name list */

long *error; /* Error */

This function returns to the caller a list of families for all resources defined in the
database with the first field name set to a given domain name.

12.14.6 db_getresmemberlist()

long db_getresmemberlist(domain, family, member_nb, member_list, error)

char *domain; /* The domain name */

char *family; /* The famiy name */

long *member_nb; /* The number of members */
char **xkmember_list; /* Member name list */

long *error; /* Error */

This function returns to the caller a list of members for all resources defined in the
database with the first field name set to a given domain and the second field name
set to a given family.

12.14.7 db_getresresolist()

long db_getresresolist(domain, family, member, resource_nb, resource_list, error)

char *domain; /* The domain name */

char *family; /* The famiy name */

char *member ; /* The member name */

long *resource_nb; /* The number of members */
char **x*resource_list; /* Resource name list */
long *error; /* Error */

This function returns to the caller a list of resource name for all resources defined
in the database for a device with a specified domain family and member field name.

176 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

12.14.8 db_getresresoval()

long db_getresresoval(domain, family, member, resource, resval_nb, resource_list, error)

char *domain; /* The domain name */

char *family; /* The famiy name */

char *member ; /* The member name */

char *resource; /* The resource name */

long *resval_nb; /* The number of resource values */
char **x*xresource_list; /* Resource value list */

long *error; /* Error x/

This function returns to the caller a list of resource values for all the resource with
a domain, family, member and name specified in the first four function parameters.
Member and resource field name can be set to wild card (*).

12.14.9 db_getdsserverlist()

long db_getdsserverlist(server_nb, server_list, error)

long *server_nb; /* The number of device server */
char ***kserver_list; /* Server name list */
lon *error; /* Error */

)

This function returns to the caller a list of device server executable name.

12.14.10 db_getdspersnamelist()

long db_getdspersnamelist (server, persname_nb, persname_list, error)

char *xserver; /* The device server executable name */
long *persname_nb; /* The number of personal name */

char x**persname_list; /* Personal name list */

long *error; /* Error */

This function returns to the caller a list of device server personal name list for device
server with a given executable name.

12.14.11 db_gethostlist()

long db_gethostlist(host_nb, host_list, error)

long xhost_nb; /* The number of host name */
char **xxhost_list; /* Host name list */
long *error; /* Error x/

This function returns to the caller a list of hosts name where device server should
run.

12.15 Pseudo device oriented calls

12.15.1 db_psdev_register()

int db_psdev_register (psdev, num_psdev, error)
db_psdev_info *psdev; /* Pseudo device parameters array */
long num_psdev; /* Pseudo devices number */
db_error *error; /* Error */

12.16. DATABASE UPDATE CALLS 177

This function is used to register pseudo devices into the database. This feature has
been implemented only for control system debug purpose. It helps the debugger to
know which process has created pseudo devices and on which computer they are
running.

12.15.2 db_psdev_unregister()

int db_psdev_unregister (psdev_list, num_psdev, error)

char x*psdev_list; /* Pseudo device(s) names list */
long num_psdev; /* Pseudo devices number */
db_error *error; /* Error */

This function is used to unregister pseudo devices from the database.

12.16 Database update calls

12.16.1 db_analyse _data()

long db_analyse_data (in_type, buffer, nb_devdef, devdef, nb_resdef, resdef,
error_line, error)

long in_type /* Buffer type (buffer or file) */

char xbuffer; /* Buffer */

long *nb_devdef; /* Number of device definition list */
char **x*xdevdef; /* Device definition list */

long *xnb_resdef; /* Number of resource definition list */
char **x*xresdef; /* Database definition list */

long *error_line; /* Buffer line number with error */

long *xerror; /* Error */

This function analyses a buffer (file or buffer) assuming that this buffer is used to
update the database and returns device definition list and resource definition list.

12.16.2 db_upddev()

long db_upddev (nb_devdef, devdef, deferr_nb, error)

long nb_devdef; /* Number of device definition list */
char *xdevdef ; /* Device definition list */

long xdeferr_nb; /* Device def. list number with error */
long *Xerror; /* Error */

This function updates the database with the new device definition defined in the
device definition list.

12.16.3 db_updres()

long db_updres (nb_resdef, resdef, deferr_nb, error)

long nb_resdef; /* Number of resource definition */
char *xresdef; /* Resource definition list */

long *deferr_nb; /* Resource def. number with error x/
long *xerror; /* Error */

This function updates the database with the new resource definition contained in
the resource definition list.

178 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

12.17 Miscellaneous calls

db_stat()

long db_stat (info, error)
db_stat_call *info; /* Database information */
long *error; /* Error */

This functions returns database global informations as the number of exported
devices defined in the database, the number of resources defined for each device
domain...

db_secpass()

long db_secpass (pass, error)
char **pass; /* Database security password */
long *xerror; /* Error */

The static database is also used to store security resources. A very simple sys-
tem protects security resources from being updated by a user if the administrator
choose to protect them. This function returns database protection data to the caller
allowing an application to ask its user for security resources password.

db_cmd_query()

int db_cmd_query (cmd_name, cmd_code, error)

char *cmd_name; /* Command name */
unsigned int *cmd_code; /* Command code */
long *error; /* Error */

The static database is also used to store (as resources) command name associated
to command code (in the CMDS domain). db_cmd_query returns the command
code associated to a command name.

db_svc_close()

int db_svc_close (error)
long *error; /* Error */

This function asks the database server to close all the files needed to store database
data (the ndbm files) allowing another process to open these files. When this
function is called, no further call to database server will work until the db_svc_reopen
function will be executed.

db_svc_reopen()

int db_svc_close (error)
long *error; /* Error */

This function asks the database server to reopen database files.

12.18 Multi TACO control system access

With release 5.5 and above of database software, the db_getresource and db_dev_import
calls of the C library have been modified in order to allow acess to multiple TACO
control system. To specify which TACO control system should be used, a forth field

12.18. MULTI TACO CONTROL SYSTEM ACCESS 179

must be added to the device name. This forth field is the name of the computer
where the TACO anchor process is running (The process called Manager). In this
case, the naming syntax is :

//FACILITY /DOMAIN/FAMILY /MEMBER

The facility name is also known as NETHOST. Example of device name which
specify the machine control system : //ARIES/SR/D_.CT/1. Another example
for a device sy/ps-b/1 defined in a control system where the nethost is libra:
//LIBRA/SY /PS-B/1. For device where the nethost is not specifed, the NETHOST
environment variable is used.

The db_dev_import enables a user to retrieve necessary parameters to build RPC
connections between clients and server for several devices with the same call. The
TACO control system defined by the first device of the list will be used.

180 CHAPTER 12. DATABASE GUIDE - NDBM BY E.TAUREL

Chapter 13

Events
by A.Gotz

13.1 Introduction

The TACO control system was originally based on synchronous remote procedure
calls (RPCs) and the client-server model. Clients and servers which required asyn-
chronism made use of the data collector (a distributed online buffer of device com-
mand results) or the servers implemented their own mini-buffers locally and the
clients polled the server. This is not always efficient in terms of time, network
bandwidth and CPU usage. Therefore an asynchronous call was added and has
been available for over a year now. The asynchronous call implements the mecha-
nisms necessary to add events without much effort. It was logical therefore with the
recent move towards Linux on frontends to take advantage of the excellent TCP /IP
stack implementation on Linux to offer programmers and clients events.

The present implementation offers a simple model for user events which will per-
mit device server programmers to add their own events (user events) to their code
thereby providing adding value to their device servers. The present implementation
is ideal for device servers which have a small number of clients. A full implementa-
tion with sophisticated system and user events which provides efficient mechanisms
for distributing events to large numbers of clients will be implemented in TANGO
(next generation TACO). The present implementation in TACO is simply an avant-
gout of TANGO events and allows TACO programmers to gain experience using
events.

This chapter presents the user event api, examples of how to program them and a
discussion on performance and problems which can arise.

13.2 Events

Events are short messages which are sent to clients asynchronously. The origin of
the messages is a device server. Clients only receive messages if they have solicited
them. Events are classified according to type. Event types are specific to the device
server and should be defined as unique long integers. The most obvious way to do
so is to use the device class unique base as offset and number events starting from
leg. :

1. #define D_EVENT_AGPS_STATE DevAgpsBase + 1

2. #define D_EVENT_0OMS_STATE_CHANGE DevOmsBase + 1

181

182 CHAPTER 13. EVENTS BY A.GOTZ

13.3 API

The event API consists of three additional calls which are distributed as part of the
DSAPI. The API consists of a client part and a server part. The client part allows
a client to register its interest in events , to receive events and to unregister once it
is finished. The server part allows servers to dispatch events to clients. The server
has to program how to trigger events.

13.3.1 Client side

e dev_event_listen() - register a callback for an event type

long dev_event_listen (devserver ds, long event_type,
DevArgument argout, DevType argout_type
DevCallbackFunction *callback,
void *user_data, long *event_id_ptr,
long *error)

devserver ds - device from which client wants to receive events

long event_type - type of event to receive

DevArgument argout - pointer to argout data (if any) which will be sent with event
DevType argout_type - argout type

DevCallbackFunction *callback - pointer to callback function

void *user_data - pointer to user data to pass to callback function

long *event_id_ptr - pointer to event id (returned by dev_event_listen())

long *error - pointer to error code (if any)

e dev_event_unlisten() - unregister a callback for an event type

long dev_event_unlisten (devserver ds, long event_type,
long event_id, long *error)

devserver ds - device from which to unregister client’s interest in event
long event_type - event type to unregister

long event_id - event id (returned by dev_event_listen())

long *error — pointer to error code (if any)long dev_event_fire

e dev_synch() - poll network to check if any events have arrived and trigger
callback

long dev_synch (struct timeval *timeout, long *error)

struct timeval *timeout - pointer to maximum time to wait while polling
long *error - pointer to error code (if any)

13.3.2 Server side

e dev_event_fire() - a server call to diispatch a user event to all clients which
have registered their interest in that event with this server

— C using Objects in C :

long dev_event_fire (DevServer ds, long event_type,
DevArgument argout,DevIype argout_type,
long event_status, long event_error)

13.4. IMPLEMENTATION 183

long event_type - event type to dispatch

DevArgument argout - pointer to argout to dispatch with event

DevType argout_type - argout type

long event_status - status of event to dispatch to client

long event_error — error code of event to dispatch to client (if status != DS_0K)

— C++ using the Device class :

long dev_event_fire (Device *device, long event_type,
DevArgument argout,DevType argout_type,
long event_status, long event_error)

long event_type - event type to dispatch

DevArgument argout - pointer to argout to dispatch with event

DevType argout_type - argout type

long event_status - status of event to dispatch to client

long event_error - error code of event to dispatch to client (if status != DS_O0K)

13.4 Implementation

User events have been implemented in TACO DSAPI v7.0. They have been tested
on Linux/x86, Linux/m68k, HP-UX and Solaris 2.5. They should work in principle
on 0S-9 but because of its flaky TCP/IP stack implementation programmers are
urged to port their device servers to one of the Unix derivatives e.g. Linux, where
they will not be plagued by sockets closing when they shouldn’t or not closing when
they should ! No port has been undertaken so far for Windows or VxWorks.

13.5 Timeouts

Events depend on detecting the server or client going down in order to work cor-
rectly. This is treated as a timeout in the client. If the client does not receive
any events during a period exceeding the asynchronous timeout value (set us-
ing dev_asynch_timeout()) it wll ping the server to see if it is still alive. If not
it will trigger the event callback with status = DS_.NOTOK and error = Dev-
Err RPCTimedout. The event will be unregistered on the client side. If the server
detects a client is not there anymore it wil silently remove it from the list of regis-
tered clients.

13.6 Examples

How best to generate events in a device server 7 The most obvious way is to create
an event thread whose job it is to poll a variable (state or value) to detect the event.
Once the event is detected the event thread calls dev_event_fire() to dispatch the
event. Here is a simple example to generate a periodic event using Posix threads :

void * events_thread(void * arg)
{

long event = 1;

long counter=0;

struct timespec t100ms;

fprintf(stderr, "\nfire_events(): starting thread %s\n",

184 CHAPTER 13. EVENTS BY A.GOTZ

(char *) arg);

for (;;)

{
dev_event_fire(ds, event,&counter,D_LONG_TYPE,DS_OK,O);
counter++;

/*

* sleep for 90 ms

*/
t100ms.tv_sec = 0;
t100ms.tv_nsec = 90000000;
nanosleep(&t100ms, NULL);

}

return NULL;
}

int event_thread_start()
{
int retcode;
pthread_t th_a, th_b;
void * retval;

#if defined(linux) || defined(solaris)
retcode = pthread_create(&th_a, NULL, fire_events, "a");
#else
retcode = pthread_create(&th_a, pthread_attr_default,
(pthread_startroutine_t)fire_events,
(pthread_addr_t)"a");

#endif /* linux || solaris */
if (retcode != 0) fprintf(stderr, "create a failed %d\n",
retcode) ;

The function event_thread_start() has to be called at an appropiate point in the
device server e.g. during class_initialise() or object_create().

13.7 Performance

The performance of events depends naturally on what type of system the device
server is rnning on. Tests have been caried out on Linux/x86, Linux/68k, HP-UX
and Solaris running on Pentiums, 68030s, s700s and SPARC CPUs. They all showed
similar performance with variations due to the scheduler. Firing of events uses the
one-way ONC RPC mechanism which means it is immediately copied tothe system
buffer without waiting. This means there is very little overhead introduced in the
device server. Generating events at maximum speed shows that the minimum time
between events is about 25 microseconds with an average of 500 microseconds over
a long (seconds) time scale. This is due to scheduler stopping the device server at
regular intervals (presumably to dispatch the events).

Using the example code above a number of tests were done on different platforms.
The results were all roughly the same i.e. the server could generate events at regular
time intervals of 100 millseconds wih a jitter of less than 10 microseconds. The jitter
goes up as a function of the number of clients e.g. jitter of 25 microseconds for 10
clients on Linux/m68k. Here is an example output log from a client (Linux/x86

13.8. KNOWN PROBLEMS

185

+ Pentium) which accepts the events from a device server running on a tacobox
(Linux/x86 + Pentium) and prints out their times :

counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =

3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374

b

server
server
server
server
server
server
server
server
server
server
server
server
server

time
time
time
time
time
time
time
time
time
time
time
time
time

13.8 Known problems

{924772119
924772119
924772119
{924772119
{924772119
{924772119
{924772119
{924772120
{924772120
{924772120
{924772120
{924772120
{924772120

s,342170
s,442169
s,542169
s,642169
s,742169
s,842169
s,942169
s,042173
s,142169
s,242169
s,342169
s,442169
s,542169

us}
us}
us}
us}
us}
us}
us}
us}
us}
us}
us}
us}
us}

delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta

time =
time =
time =

time

time =
time =

time

time =

time

time =

time

time =

time

Known problems so far are that when the server or client die then HP-UX and
Solaris servers and clients have difficult to detect this due to the way sockets are
handled. The next release will fix this by implementing an event heartbeat which
will reactivate the event channel. Failure to do so will result in the event timing
out and the client being removed from the list of registered clients in the server.

99974 us
99999 us
100000 us
100000 us
100000 us
100000 us
100000 us
100004 us
99996 us
100000 us
100000 us
100000 us
100000 us

186 CHAPTER 13. EVENTS BY A.GOTZ

Chapter 14

The Signal Interface
by J.Meyer and J-L.Pons

14.1 Introduction

The device server signal interface is based on the use of the device server signal and
multi signal classes. They define a signal object for a value with a set of standard
properties and functionality. The implementation of three commands with standard
behaviour in the device class offers a standard interface to clients. Following this
conventions, generic monitoring applications and the history database can be easily
used, without coding, on the devices of a class.

14.2 Conventions on Signals
The signal class allows the creation of signal objects with a naming convention as:
DOMAIN/FAMILY/MEMBER/SIGNAL

The signal name is an extension to the device name used in the ESRF control
system. To create a signal object a name with four fields must be used. This
corresponds to signal naming as it is used in the history database and in general
data display applications.

e A signal represents a simple data value.
e All signals of a class must be of the same data type.
e The data type might be float values or double values.

A special problem is the relation between read and set values. To identify all signals
which can be set clearly the following naming convention must be respected. A set-
point signal name must be preceded by the identifier ”set-".

Example: SR/RF-FOC/TRA3-1/set-Voltage

A set-point signal can be modified and its actual value can be read.

In the case of a readable set-point value and a separate read value (as on most of
the power sup- plies) the read values must keep the same signal name without the
preceding identifier ”set-”.

Example: SR/RF-FOC/TRA3-1/Voltage

With this convention all signals which can be modified can be easily identified. Also
the relation between separate read and set signals can be automatically established.

187

188 CHAPTER 14. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

14.3 The Signal Properties

A set of signal properties is defined in the signal class. The properties must be
defined for a device class. They are used for signal identification and the auto-
matic configuration of monitoring and tuning applications and the history database
configuration tool.

The properties of a signal object are:

1. Name - The full signal name.

2. Label - A label for the signal value, which can be used in applications.
Unit - The unit of the signal value.

Format - The format in which the data should be displayed (printf() format).

Description - A text describing the signal.

S e W

Max - A maximum value. Can be used for data display or to check limits of
set values.

7. Min - A minimum value. Can be used for data display or to check limits of
set values.

8. AlHigh - Above this limit an alarm will be indicated.
9. AlLow - Under this limit an alarm will be indicated.

10. Delta - If the nominal value and the read value of the signal differ by +/-
delta during the number of seconds specified by ”Delta_t” , an alarm will be
raised.

11. Delta_t If the nominal value differs from the read value for a longer time than
Dta_t seconds, an alarm will be raised.

12. Standard Unit - A multiplier factor to convert the given signal unit into a
standard unit (V, A, W, bar ...).

14.4 The Server Side

14.4.1 The Commands to Access Signals

Four commands must be defined in a device class to access signals. One to read
an array of signal values, one to identify and to describe each signal value, one to
update changed signal properties and one to set a signal value.

DevReadSigValues

The command reads an array of signal values. The array should contain all signals
for this class. The data type for all signals of a class must be the same. Possible
data types are float values or double values. The command must always return an
array, even if only one signal value is defined.

To avoid the polling of several commands in the data collector, the state of a
device should be also treated as a signal and should be returned as the signal
"DOMAIN/FAMILY /MEMBER /State” by this command.

Command list entry:

DevReadSigValues, read_signal_values, D_VOID_TYPE, D_VAR_FLOATARR, READ_ACCESS

14.4. THE SERVER SIDE 189

Command function definition:

long read_signal_values (xxx ds, DevVoid *argin, DevVarFloat Array *argout, long *error)
Description: Returns the signal values of a device.

Arg(s) In: None

Arg(s) Out: DevVarFloatArray signal_values - Array of signal values.

long *error - Pointer to error code, in case routine fails.

DevGetSigConfig

The command reads the properties of all signals returned by DevReadSigValues.
The order of the signals must be the same for the two commands. The first value
returned by DevReadSigValues must correspond to the first set of properties re-
turned by DevReadSigConfig.

The properties of all signals of a class are returned as a string array. The first
string (element [0]) must indicate the number of properties per signal, to have the
flexibility to add new properties. The number of elements in the string array will
be:

length = number of properties * number of signals + 1

The properties of the signals must be added to the string array by using the result
of the method DevMethodReadProperties on the signal or multi signal object (see:
the user guides of the two classes).

Command list entry:

DevReadSigConfig, read_signal_config, D_VOID_TYPE, D_VAR_STRINGARR, READ_ACCESS
Command function definition:

long read_signal_config (xxx ds, DevVoid *argin, DevVarStringArray *argout, long *error)
Description: Returns the signal properties of all signals of a device.

Arg(s) In: None

Arg(s) Out: DevVarStringArray signal_values - Array of signal properties.

long *error - Pointer to error code, in case routine fails.

DevUpdateSigConfig

The command reinitialises all signal properties of all signals of a device. After
an update of the resource database calling this command reinitialises all signal
properties dynamically with their actual resource values. The goal is an interactive
resource editor with a direct update of the device configuration.

The method DevMethodSignalsReset must be used on the signal or multi signal
object (see: the user guides of the two classes)

Command list entry:

DevUpdatedSigConfig, update_signal_config, D_VOID_TYPE, D_VOID_TYPE, WRITE_ACCESS

Command function definition:

190 CHAPTER 14. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

long update_signal_config (xxx ds, DevVoid *argin, DevVoid *argout, long *error)

Description: Reinitialises all signal properties of all signals of a
device with the actual resource values.

Arg(s) In: None

Arg(s) Out: None

DevSetSigValue

Receives a new value for a set-point signal (with ”set-” identifier). Verifies the
validity of the given signal name and that the value doesn‘t exceed the specified
range for the signal by using the method DevMethodCheckLimits on the signal
or multi signal object (see: the user guides of the two classes). Applies the new
set-point.

Command list entry:

DevSetSigValue, set_signal_value, D_STRINGDOUBLE_TYPE, D_VOID_TYPE, WRITE_ACCESS
Command function definition:

long set_signal_value (xxx ds, DevStringDouble *argin, DevVoid *argout, long *error)

Description: Receives a new value for a signal. Verifies that the value
doesn‘t exceed the specified range for the signal.
Applies the new set-point.

Arg(s) In: DevStringDouble *argin - Structure containing the name of the
signal to modify as a string and the value to be applied as double.

Arg(s) Out: None

14.4.2 Coding Example using a Multi Signal Object

This example is for a device server written in ”C”. For the use in a ”"C++" device
server the multi signal object must be created via the OIC interface, but can be
used with the same functionality.

To use a multi signal object it must be created and initialised in the object_initialise()
method:

#include <MDSSignalP.h>
#include <MDSSignal.h>

/*
* Create the signal objects specified for this class

*/

if (ds__create (ds->devserver.name, mDSSignalClass,
&ds->focus.msignal_obj, error) == DS_NOTOK)

{
return(DS_NOTOK) ;

}

if (ds__method_finder (ds->focus.msignal_obj, DevMethodInitialise)

14.4. THE SERVER SIDE 191

(ds->focus.msignal_obj, focusClass->devserver_class.class_name,
error) == DS_NOTOK)

{
return(DS_NOTOK) ;

}

Afterwards two commands can be implemented using the multi signal object:

Function: static long read_signal_config()

Description: Read the properties of all signals specified
for the focus power supply.

Arg(s) In: Focus ds - pointer to object
void *argin - no input arguments

Arg(s) Out: DevVarStringArray *argout - Array of signal properties
long *error - pointer to error code, in case routine fails

static long read_signal_config (Focus ds, DevVoid #*argin,
DevVarStringArray *argout, long *error)

{
*error = 0;
if (ds__method_finder (ds->focus.msignal_obj,
DevMethodReadProperties)
(ds->focus.msignal_obj, argout, error) == DS_NOTOK)
{
return(DS_NOTOK) ;
X
return (DS_OK);
}
Function: static long update_signal_config()
Description: Reinitialises all specified signal properties with
their actual resource values..
Arg(s) In: Focus ds - pointer to object
void *argin - no input arguments
Arg(s) Out: void *argout - no outgoing arguments
long *error - pointer to error code, in case routine fails
static long update_signal_config (Focus ds, DevVoid *argin,
DevVoid *argout, long *error)
{

*error=0;

192 CHAPTER 14. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

if (ds__method_finder (ds->focus.msignal_obj, DevMethodSignalsReset)
(ds->focus.msignal_obj, error) == DS_NOTOK)
{
return(DS_NOTOK) ;
}
return(DS_0K) ;
}

The third command just has to return an array of values which must be ordered as
the signal properties!

Function: static long read_signal_values()

Description: Read the measurement and setpoint values
for this device.

[0] : current setpoint
[1] : voltage
[2] : current

Arg(s) In: Focus ds - pointer to object
void *argin - no input arguments
Arg(s) Out: DevVarFloatArray *argout - Array of signal values..
long *error - pointer to error code, in case routine fails

static long read_signal_values (Focus ds, DevVoid *argin,
DevVarFloatArray *argout, long *error)

{
static float values[3];
xerror = 0;
-> Read the signal values here!
argout->length = 3;
argout->sequence = &values[0];
return (DS_OK);

}

The fourth command must treat all available set-points, which are identified by
their name.

Function: static long set_signal_value()

Description: Receives a new value for a signal. Verifies that the value

14.4. THE SERVER SIDE 193

doesn‘t exceed the specified range for
the signal. Applies the new set-point.

Arg(s) In: Focus ds - pointer to object
DevStringDouble *argin - Structure containing the name
of the signal to modify as a string and
the value to be applied as double.

Arg(s) Out: void *argout - no output arguments.
long *error - pointer to error code, in case routine fails

static long set_signal_value (Focus ds, DevStringDouble *argin,
void *argout, long *error)

long limit_state;
char *sig_name;

*xerror = 0;

/%
* Check whether the signal name is a valid set-point signal and
* whether its values are in the specified range.

*/

if (ds__method_finder (ds->focus.msignal_obj, DevMethodCheckLimits)
(ds->focus.msignal_obj, argin, &limit_state, error)

==DS_NOTOK)
{
return(DS_NOTOK) ;
}
if (limit_state != DEVRUN)
{
¥error = DevErr_ValueOutOfBounds;
return (DS_NOTOK) ;
}
/*

* Find the set-point signal amongst all available set-points and
* apply the new set value.

*/

sig_name = strrchr (argin->name, ‘/¢);
sig_name++;

if (strcmp (sig_name, "set-Voltage") == 0)

194 CHAPTER 14. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

if (strcmp (sig_name, "set-Current") == 0)

return (DS_0K);
}

The multi signal object is also used to handle alarms on signals which change the
state of a device. The method used in the DevState command is DevMethodCheck-
Alarms and the method used in the DevStatus command is DevMethodReadAlarms.
See the Multi Signal Class Users Guide for more information.

14.5 Reading the Signal Properties without Ac-
cessing the Device

A second way to extract the signal names and properties of a device was developed.
They are read directly from the resource database without a connection to the
device. This interface is used in applications like fsigmon, devsel, hdb_config and
the hdb_filler which can read data only from the data collector without having access
to a device server running on a VME crate.

To use this functionality your client must be linked with the shared library: libdssig.sl
The functions were not integrated to the TACO API-library, because it uses inter-
nally the signal and multi signal classes. This would cross reference the API-library
with the class library. Linking problems and Makefile changes would be the result.
Available functions are:

14.5.1 dev_get_sig_config()

long dev_get_sig_config (char *device_name, DevVarStringArray *sig_config,
long *error)

Description: Extract the signal configuration for a device from
the resource database. The result is the same as
calling the command DevGetSigConfig on the device.
The returned data must not be freed. Data will be
freed with the next call to the function.

Arg(s) In: char *device_name - Name of the device.

Arg(s) Out: DevVarStringArray *sig_config - Array containing the
configuration of all signals known for this device.

long *error - pointer to error code, in case routine fails.

14.5.2 dev_get_sig _config from name()

long dev_get_sig_config_from_name (char *signal _name,
DevVarStringArray *sig_config,
long *error)

14.5. READING THE SIGNAL PROPERTIES WITHOUT ACCESSING THE DEVICE195

Description: Extract the signal configuration for one signal of
a device from the resource database. The returned
data must not be freed. Data will be freed with the
next call to the function.

Arg(s) In: char *device_name - Name of the device.
char *signal_name - Name of the signal.

Arg(s) Out: DevVarStringArray *sig_config - Array containing the
configuration of the signal for this device.

long *error - pointer to error code, in case routine fails.

14.5.3 dev_get_sig_list()

long dev_get_sig_list (char *device_name, DevVarStringArray *sig_list,
long *error)

Description: Extract all signal names defined for a device.
Arg(s) In: char *device_name - Name of the device.
Arg(s) Out: DevVarStringArray *argout - Array containing the list

of signals defined for the device.
long *error - pointer to error code, in case routine fails.

14.5.4 dev_get_sig set _list()

long dev_get_sig_set_list (char *device_name, DevVarStringArray *argout,
long *error)

Description: Extract all signal names for set-points defined for a
device. Signal names for set-points are pre-ceeded by
the by the identifier "set-".

Arg(s) In: char *device_name - Name of the device.

Arg(s) Out: DevVarStringArray *sig_list - Array containing the list
of signals for set-points defined for the device.

long *error - pointer to error code, in case routine fails.

14.5.5 dev_get_sig setread from name()

long dev_get_sig_setread (char *signal_name,DevLongString *set_signal,
DevLongString *read_signal, long *error)

Description: Returns for a given signal of a device the corresponding
set-point signal and read-point signal names together
with their index in the signal list of the device.

The signal name entered can be either the set-point signal

196 CHAPTER 14. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

or the read-point signal name. If a set-point doesn‘t exist
for a entered signal name, a NULL pointer is returned for
the signal name and the index is initialised to "-1".

The same is true for a set-point signal which has no
separate read-signal defined.

Signal names for read-points and set-points are the same,
only the set-point signal name is preceded by the
identifier "set-".

Arg(s) In: char *device_name - Name of the device.
char *signal_name - Name of the signal.

Arg(s) Out: DevLongString *set_signal - The name and the index,
in the signal list, of the set-point signal.

DevLongString *read_signal - The name and the index,
in the signal list, of the read-point signal.

long *error - pointer to error code, in case routine fails.

14.6 The Client Side

With the described commands, signals can be displayed in a generic way on the
client side.

1. To find out the data type used by the command DevReadSigValues, the func-
tion dev_cmd_query() of the API-library can be used. Filtering for the com-
mand indicates the data type of the outgoing arguments.

2. By executing the command DevReadSigConfig the place of a signal in the
array can be determined by its name. All other properties needed for a signal
display are following the signal name in the described order (see ” The Signal
Properties” on page2).

3. DevReadSigValues returns the signal values in the same order as indicated by
DevReadSigConfig.

An example shows how DevReadSigConfig and DevReadSigValues can be used to
display signals in a device server menu. The data type in this case is known and
dev_cmd_query() is not used.

devserver device;
DevVarStringArray sig_config;
DevVarFloatArray param_array;
long nu_of_properties;
long nu_of_signals;
long i, k;
case (3)

/*

* Read the device signal values.

*/

14.6. THE CLIENT SIDE 197

0;
NULL;

param_array.length
param_array.sequence

if (dev_putget (device, DevReadSigValues, NULL, D_VOID_TYPE,

¶m_array, D_VAR_FLOATARR, &error)
{
dev_printerror_no (SEND, "DevReadSigValues", error) ;
break;
}
/%
* Read the signal properies to display the values.
*/
sig_config.length = 0;

sig_config.sequence = NULL;

if (dev_putget (device, DevGetSigConfig, NULL, D_VOID_TYPE,
&sig_config, D_VAR_STRINGARR, &error) < 0)

{
dev_printerror_no (SEND, "DevGetSigConfig", error);
break;
}
/%
* Find the label format and unit for the signal values.
*/

nu_of_properties = atol (sig_config.sequence[0]);
nu_of_signals (sig_config.length -1) / nu_of_properties;

printf ("Device parameters:\n");

for (i=0; i<nu_of_signals; i++)

{
sprintf (format, "%24s [%2s] : ¥s\n",
sig_config.sequence[(i*nu_of_properties) + 2],
sig_config.sequence[(i*nu_of_properties) + 3],
sig_config.sequence[(i*nu_of_properties) + 4]);
printf (format, param_array.sequencel[i]);

/*
* Free the allocated arrays.

*/

if (dev_xdrfree (D_VAR_FLOATARR, ¶m_array, &error) < 0)
{

dev_printerror_no (SEND, "dev_xdrfree", error);

}

< 0)

198 CHAPTER 14. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

if (dev_xdrfree (D_VAR_STRINGARR, &sig_config, &error) < 0)

{

dev_printerror_no (SEND, '"dev_xdrfree", error);
}
break;

14.7 The Signal Interface to HDB

An entry point to the HDB signal library was developed to allow signal configu-
ration in HDB with the same names as they are known in a device class. Using
dev_get_sig_config() in the HDB signal library and storing the result of the com-
mand DevReadSigValues in the data collector, all signals configured for a device
class (in the device server) are dynamically available in HDB with the same names
and descriptions.

But, today the HDB signal library still needs for dynamic loading one module for
each device class. It is just a question of copy and paste to install such a module
for a device class using the signal interface, but it implies recompilation of the
HDB signal library. Studies are going on to change this to avoid recompilation and
reinstallation of the HDB signal library in the future.

Here is an example module for the HDB signal library. This can be copied, but the
function names must be changed to the class name the new module will be used
for.

#include <API.h>
#include <siggen.h>

/*
* function prototypes

*/

long RF_FOCUS_load_type (long *error);

long RF_FOCUS_signal_list_init (char *device_name,
SigDefEntry **signal_list_ptr,
long *n_signal,
long *error);

extern long signal_list_init (char *device_name,
SigDefEntry **signal_list_ptr,
long *n_signal,
long *error);

/*

* The load type function

*/
long RF_FOCUS_load_type (long *error)
{

return (DS_OK);

}
/*

* Dynamic signal initialisation function.
* Uses signals defined on the device server level.

14.8. CONCLUSION 199

*/

long RF_FOCUS_signal_list_init (char *device_name,
SigDefEntry **signal_list_ptr,
long *n_signal,
long *error)

{
/*
* calls the general signal init function, which is
* used for all classes which implement signals on
* the device server level.
*/
if (signal list_init (device_name, signal_ list_ptr,
n_signal, error) == DS_NOTOK)
{
return (DS_NOTOK) ;
¥
return (DS_0K);
}

14.8 Conclusion

The device server signal interface was developed for the SRRF project and was
adapted mainly to the project needs. But, I see it as a useful extension to other
device server classes. The advantage of using signals is that you can immediately
profit from generic plotting and display programs like fsigmon and xtuning. Con-
tact meyer@esrf.fr or pons@esrf.fr for more information on these programs.

200 CHAPTER 14. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

Chapter 15

LabView for TACO
by A.Gotz

15.1 Introduction

This document describes the LabView interface to TACO control systems. It de-
scribes the DSAPI client interface and how to write TACO device servers in the
LabView graphical programming language G.

15.2 Getting started

In order to get started you need access to the following tools :
1. LabView on Unix (Linux, HP-UX, Solaris or Windows)

2. for Unix : the LabView-TACO shared libraries lv_dsapi.so and lv_dsclass.so
(only needed if you plan to write a device server in TACO) in your shared
library path (LD_LIBRARY _PATH for Linux / SolarisandSHLIB_PATH for
HP-UX)

3. for Windows : the LabView-Taco shared library lv_dsapi.dll and oncrpc.dll in
your $PATH e.g. in c:
Windows (you can download these two libraries as a zip file!)

4. start LabView (normally by typing labview) and open one of the example VI’s
or wire your own following the instructions in this document.

15.3 LabView-TACO interface

15.3.1 Clients

The following shared library calls have been implemented to interface TACO clients
to LabView :

1. 1v_dev_putget () - will execute a command on a device, one input and output
argument is 1 passed, an error code is returned and a status. The call has the
following calling syntax :

Lftp:/ /ftp.esrf.fr/pub/cs/taco/lv_taco.zip

201

202

CHAPTER 15. LABVIEW FOR TACO BY A.GOTZ

lv_dev_putget (char *name, char *cmd, void *argin, void *argout, long
*error)

name : device name e.g. “id11/oregon/1” (passed as C string type)

cmd : command to execute e.g. “DevMoveRelative” (passed as C string
type)

argin : input argument e.g. array of floats (passed as ”Adapt to Type”
(specify ”Handles by Value” on Labview 6i) type, this means the G
program has to wire the correct input type expected by the command
to the input argument e.g. if a double array is expected the LabView
program has to provide a double array as input, failure to do so can
result in a core dump of the LabView program ! NOTE: the input has
to be wired even it is not used to a dummy type of the correct type; this
is because LabView does not differentiate between not used input types
when calling library functions and will not allow the program to run if
an input is not wired - the RUN arrow is broken)

argout: output argument e.g. array of floats (passed as ” Adapt to Type”
(specify ”Handles by Value” on Labview 6i), see text above for advice
on how to use this type. NOTE: the input has to be wired even it is an
output to a dummy type of the correct type; this is because LabView
does not differentiate between output only types when calling library
functions and will not allow the program to run if an input is not wired
- the RUN arrow is broken)

error : output error if any (passed as pointer to 32 bit integer. See NOTE
above for wiring the output error)

returns : a 32 bit integer indicating the status of the command (0 = OK,
-1 = NOT OK)

NOTE : refer to section on types to know which are supported for argin
and argout

2. 1v_dc_devget () - will retrieve the result of a command on a device from the

data collector (the TACO data cache), one output argument is passed, an
error code is returned and a status. The call has the following calling syntax

lv_dc_devget (char *name, char *cmd, void *argout, long *error)
name : device name e.g. “sr/d-ct/1” (passed as C string type)

cmd : command to execute e.g. “DevReadSigValues” (passed as C string
type)

argout: output argument e.g. array of floats (passed as ” Adapt to Type”
(specify ”Handles by Value” in Labview 6i), see text above for advice on
how to use this type. NOTE: the input has to be wired even it is an
output to a dummy type of the correct type; this is because LabView
does not differentiate between output only types when calling library
functions and will not allow the program to run if an input is not wired
- the RUN arrow is broken)

error : output error if any (passed as pointer to 32 bit integer. See NOTE
above for wiring the output error)

returns : a 32 bit integer indicating the status of the command (0 = OK,
-1 = NOT OK)

NOTE : refer to section on types to know which are supported for argin
and argout

15.3. LABVIEW-TACO INTERFACE 203

3. lv_dev_protocol() - change the RPC protocol on a device to TCP or UDP.
NOTE: the default is UDP. Changing to TCP will make client connections
more reliable and allow correct error detection (e.g. server down error). The
call has the following syntax :

e lv_dev_protocol(char *name, char*protocol, long *error);

e name : name of device e.g. “id11/oregon/1” (passed as C string type)
e protocol : RPC protocol e.g. “tcp” or “udp” (passed as C string type)
e error : error if any (passed a pointer to 32 bit integer)

[]

4. 1lv_dev_timeout () - change RPC timeout on a device. The call has following

syntax :
e lv_dev_timeout(char *name, long timeout, long *error);
e name : name of device e.g. “id11/oregon/1” (passed as C string type)
e timeout : new timeout in milliseconds (pass as 32 bit integer)
e error : error code if any (passed as pointer to 32 bit integer)

5. 1lv_dev_free() - close down all connections to a device. This call is useful
for releasing access to devices not used anymore. It closes all open network
connections to the device thereby also saving open file descriptors. The first
call to the device will reimport the device. The call has following syntax :

e lv_dev_free(char *name, long *error);
e name : name of device e.g. “id11/oregon/1” (passed as C string type)
e error : error code if any (passed as pointer to 32 bit integer)

6. 1lv_dev_error_str() - return TACO error string corresponding to error_no.
The call has following syntax :

e char *lv_dev_error_str(long error no);
® errorno : error number

7. lv_dev_cmd_query() - return the list of commands supported by a device and
their types. This call is mainly useful as info for the LabView programmer to
know what commands and what data types are supported for a device . The
call has following syntax :

e long lv_dev_cmd_query(char *device, void* cmd_list, long *error);
e device : the name of the device

e cmd.list : list of commands and their input/output types returned as an
array of strings (passed as ” Adapt to Type”, specify ”"Handles by Value”
in Labview 6i)

e error : pointer to error code in case routine fails
8. 1lv_dc_cmd_query() - return the list of commands polled by the data collector
for a device and their types. This call is mainly useful as info for the LabView
programmer to know what commands and what data types are supported for
a device in the data collector. The call has following syntax :
e long lv_dc_cmd_query(char *device, void* cmd_list, long *error);

e device : the name of the device

204 CHAPTER 15. LABVIEW FOR TACO BY A.GOTZ

e cmd.list : list of commands and their input/output types returned as an
array of strings (passed as ” Adapt to Type”, specify ”Handles by Value”
in Labview 6i)

e error : pointer to error code in case routine fails

9. 1lv_db_getdevexp() - return the list of exported devices whose names satisfy
the filter. The call has following syntax :

e long lv_db_getdevexp(char *filter, void* device_list, long *error);

e device : name filter of format D/M/F where either of D, F or M can be
the wildcard *

e device list : list of device names returned as an array of strings (passed
as ” Adapt to Type”, specify "Handles by Value” in Labview 6i)

e error : pointer to error code in case routine fails

15.3.2 Servers

It is possible to write TACO device servers in LabView (described below). HOW-
EVER the preferred method to make Labview callable from TACO clients is to
generate a shared library (DLL in Windows parlance) of your Labview program
using the Application Builder and to call the shared library from a TACO device
server. If you cannot generate a shared library from Labview then use the technique
below.

TACO device servers in Labview work by implementing a device server loop in a part
of the G program which polls the network periodically (using the lv_ds_cmd_get()
call) to see if there are any client requests. Once a request is detected the Lab-
View program has to execute it and then return the answer to the client (using
the lv_ds_cmd_put()) call. Clients and servers communicate using the TACO RPC
protocol on the network. The TACO devices have to be defined beforehand in the
TACO database. The following shared library calls have been implemented to write
TACO device servers in G :

1. 1v.ds_init () - create and initialise a LabView TACO device server, to be
called once in a LabView device server before calling lv_ds_cmd_get(). The
call has the following calling syntax :

e lv_ds_init(char *server, char*name);

e server : device server executable name e.g. “StressRigds” (passed as C
string type)

e name : device server instance/personal name e.g. “id11” (passed as C
string type)

2. lv.ds_cmd_get () - poll network to see if a client request has arrived, if yes
command returned is non-zero. Can only be called after lv_ds_init() has been
called. The call has the following syntax :

e lv_ds_cmd_get(long *command, void *argin);

e command : command received, can be one of DevLVIOStringDevState
(1) takes array of strings as input and returns array of strings as output,
DevLVIODouble (2) takes array of doubles as input and returns array
of doubles as output, DevReadValue (3) returns an array of doubles as
output, DevSetValue (4) takes array of doubles as input, DevState (5)
and DevStatus (6) or 0 if no client request. DevState and DevStatus are
handled automatically by the LabView device server

15.4. TYPES 205
e argin : passed as ”Adapt to Type” (specify ”Handles by Value” on Lab-
view 61).

3. lvds_cmd put () - return result to client after completing executing of com-
mand. Must only be called after a lv_ds_cmd_get() has returned a non-zero
command value. The call has the following calling syntax :

e lv_ds_cmd_put(long command, void *argout);

e command : command returned by lv_ds_cmd_get() (passed as 32 bit in-
teger)

e argout : double array to be passed back to client if command was De-
vIOLVString, DevIOLVDouble or DevReadValue (passed as ”Adapt to
Type” (specify ”Handles by Value” on Labview 6i))

15.3.3 Debugging

An additional command exists to set the debugging flag in the library in order to
display debugging information in a graphical window. The command is :

1. 1v_ds_debug(long debug) : sets the debug flag. Setting the debug flag to a
non-zero value switches on the debugging, zero switches it off.

15.4 Types

All TACO kernel types and motor types are supported. The following types are
supported as input and output :

1. D_.VOID_.TYPE

2. D.SHORT_TYPE
3. D.LONG_.TYPE
4. D_.FLOAT.TYPE

o

D_.DOUBLE_TYPE
D_STRING_TYPE
D_VAR_STRINGARR
D_VAR_SHORTARR

© » N o

D_VAR_LONGARR
10. D_VAR_.ULONGARR
11. D_.VAR_FLOATARR
12. D_.VAR.DOUBLEARR
The following types are supported as input only :
1. D.MOTOR_FLOAT
2. DDMULMOVE_TYPE

The following arguments are supported in output only :

206

-

© N o

CHAPTER 15. LABVIEW FOR TACO BY A.GOTZ

D_.LONG_READPOINT
D_FLOAT_READPOINT
D_DOUBLE_READPOINT
D_STATE_FLOAT_READPOINT
D_VAR_LRPARR
D_VAR_FRPARR
D_VAR_SFRPARR
D_.OPAQUE_TYPE

4 Examples

There are examples of calling all the functions as well as examples of a TACO
LabView device server (device_server.vi) and client (device_client.vi) are available.
Study them to find out how to write your own clients and servers in LabView.

15.5 Known Problems

Some of the known problems with the TACO LabView interface are :

1.

out of memory - sometimes LabView gives this error message when calling
the lv_dev_putget() function. I don’t know what this is due to. It seems to
be occur when a string is passed as output. The only solution I have found is
to rewire the corresponding (dummy) input for the output to another string
type or to recreate it as a constant. This problem has been mostly occurring
on HP-UX. If anyone finds a better explaination/solution for this problem let
me know.

limited number of devices - the present interface is limited to 1000 TACO
devices in a LabView session

not unregistered LabView device servers - there is no routine yet for unregis-
tering LabView device servers. This is not a major problem. It simply means
the number of reserved program numbers will go up every time a LabView
device server is started.

. blocked lv_dev_putget() call - this can happen on HPUX when trying to access

a device running on a host which is not reachable from the host on which
LabView is running. The present implementation will block. This problem
does not occur on Linux.

client cannot run in same Labview session as server - the present version does
not support running clients in the same Labview session as the device server.

too many files open - this problem can be encountered in Labview applications
which have too many devices open. The latest (V1.5) version of the TACO
interface sets the limit of the number of open files to the maximum operating
system allowed value at the first call. If you still have problems then your
application is too big ! Previous versions (jV1.5) are limited by the default
limit for no. of open files e.g. 60 on HP-UX.

Labview hangs - this can happen when accessing a device with UDP protocol
and the server/host are down. The solution is to switch to TCP protocol.

15.6. FUTURE DEVELOPMENTS 207

8. Windows port is based on DSAPI V5.15. Data collector interface and lv_dsclass
have not been ported (yet). Could be if the need arises.

9. the resizing of variable length string arrays as output does not work properly.
It will downsize the input array but not upsize it. To get around this problem
pass a string array initialised with more elements than you know will be
returned. The array will then come back with the correct size. Apparently
there is a leak with string arrays. If you see this please let me know so I can
reproduce it and try to fix it.

15.6 Future developments

This is the sixth release of the LabView TACO interface. A number of improvements
been made e.g. adding support for the data base, dynamic device management,
increasing limit on open files. In the future we plan to offer a VI library for TACO
which will reduce the programming effort on clients even more. If any readers
have ideas for other improvements they should send their comments to the author
(goetzQesrf.fr) or even better add them to the source code themselves and then
send the code to the author !

208 CHAPTER 15. LABVIEW FOR TACO BY A.GOTZ

Chapter 16

Python and TACO
by M.C.Dominguez and J. Meyer

16.1 Introduction

Python is fast becoming a very popular language for doing almost anything includ-
ing writing TACO clients and servers. This chapter documents (briefly) the TACO
Python interface for clients (written by M-C.Dominguez) and servers (written by
Jens Meyer).

16.2 Client interface

The TACO client interface in Python is based on an object model. The commands
to a device are dynamically added to the list of methods for the device. Here is an
example of using the TACO client interface in Python :

file TacoDevice.py

x=Device("MCD/maxe032_1/1")

print x

x.CommandList ()

x.tcpQ

x.udpQ)

print x.timeout()

x.timeout (2)

a = x.DevReadEncPos(2)
aa=array([0,1,2,3,4,5,6,7] ,Float32)
x.DevReadMulVel(0,1,2,3,out=aa)
bb=DevReadMulVel(0,1,2,3,outtype=’numeric’)

dev_putresource ("MCD/maxe032_1/1","toto","5")
dev_getresource("MCD/maxe032_1_1/1","axe_ident0")
dev_delresource ("MCD/maxe032_1/1","toto")

In addition to the dev.command() interface the following calls are defined in the
interface :

1. dev_debug(flag) - sets python functions debug flag

e input : debug flag (0: no trace, else: trace)

209

210CHAPTER 16. PYTHON AND TACOBY M.C.DOMINGUEZ AND J MEYER

10.

o returns : - 0: error - 1: OK
dev_init (mdevname) - inits the class instance used by x=Device(” MCD /maxe032.1/1")

e input : device name
o returns : list ([] if error, or [devname,cpt] devname: mdevname in low-
ercase cpt: index in C device table)

dev_unref (mdevname) - decrement reference to that object in Tab_dev table
If reference becomes 0, calls the C dev_free routines:
e input : device name

e returns: - 0 : error,- 1 : OK
dev_query (mdevname) - asks for database device command list

e input : device name in lower case

e returns : dictionnary (if error else cmd_name:[cmd,in_type,out_type],
. where cmd_name: command string, cmd: command numeric value,
in_type: input type, and out_type: output type)

dev_tcpudp (mdevname,mode) - Sets mode tcp/udp for the device

e input : device name in lower case, mode= "tcp” or "udp”

e returns : - 0 if error, - 1 if OK
dev_timeout (mdevname,*mtime) - Asks for or set the device timeout

e input : device name in lower case, - mtime: optional argument: - if not
existing: read timeout required - if exists: time in second for setting
timeout

e returns : - 0 if error, - time in sec (read or set) if OK
dev_getresource (mdevname,resname) - Gets a device resource

e input : mdevname= device name, resname= resource name
e returns : value packed as a string (resource value if OK, else None if
error)
dev_putresource (mdevname,resname,value) - Sets a device resource
e input : mdevname=device name, resname=resource name, value=the
resource value packed as a string

e returns : value (1 if OK, 0 if error)
dev_delresource(mdevname,resname) - removes a device resource

e input : mdevname=device name, resname=resource name
o returns : value (1 if OK, 0 if error)

dev_io(mdevname ,mdevcommand,*parin,**kw) - sends a command to a de-
vice
e input : mdevname=device name in lower case, parin=list of optional
INPUT parameters, kw=dictionnary of optional OUTPUT parameters

e returns : value (1 if no device ARGOUT or OUTPUT param provided,
device ARGOUT if device ARGOUT and no OUTPUT param)

16.3. SERVER INTERFACE 211

List of taco types handled by the C interface :

D_VOID_TYPE
D_BOOLEAN_TYPE
D_USHORT_TYPE
D_SHORT_TYPE
D_ULONG_TYPE
D_LONG_TYPE
D_FLOAT_TYPE
D_DOUBLE_TYPE
D_STRING_TYPE

D_INT_FLOAT_TYPE
D_FLOAT_READPOINT
D_LONG_READPOINT
D_DOUBLE_READPOINT
D_MOTOR_LONG
D_MOTOR_FLOAT
D_STATE_FLOAT_READPOINT
D_MULMOVE_TYPE

D_VAR_CHARARR
D_VAR_STRINGARR
D_VAR_USHORTARR
D_VAR_SHORTARR
D_VAR_ULONGARR
D_VAR_LONGARR
D_VAR_FLOATARR
D_VAR_DOUBLEARR
D_VAR_FRPARR
D_VAR_SFRPARR
D_VAR_LRPARR
D_OPAQUE_TYPE

For numeric types, the correspondance C to Python numeric is :

D_VAR_CHARARR Int8
D_VAR_USHORTARR Int16
D_VAR_SHORTARR Int16
D_VAR_ULONGARR Int32
D_VAR_LONGARR Int32
D_VAR_FLOATARR Float32
D_VAR_DOUBLEARR Float64

16.3 Server interface

Thanks to the work by Jens Meyer it is possible to write TACO device servers in
Python. The documentation is in the form of examples (yes it is so easy).

16.3.1 Example 1
The first example is :

TacoServer import *

212CHAPTER 16. PYTHON AND TACOBY M.C.DOMINGUEZ AND J MEYER

class MyServer (TacoServer):
"This is a test class"

#

+*

Common variables for a class

my_cmd_list = { DevState : [D_VOID_TYPE, D_SHORT_TYPE , ’state’],
DevStatus: [D_VOID_TYPE, D_STRING_TYPE, ’status’],
Dev0On: [D_VOID_TYPE, D_VOID_TYPE , ‘’on’],
Dev0ff: [D_VOID_TYPE, D_VOID_TYPE , ’off’],
DevSetValue: [D_FLOAT_TYPE, D_VOID_TYPE , ’set’],
DevSetParam: [D_VAR_FLOATARR, D_VOID_TYPE , ’set_array’],
DevReadValue: [D_VOID_TYPE, D_FLOAT_TYPE, ’read’],
DevReadSigValues: [D_VOID_TYPE, D_VAR_FLOATARR,’read_signals’],
DevGetDevs: [D_VOID_TYPE, D_VAR_STRINGARR,’read_names’],
DevSetDevs: [D_VAR_STRINGARR, D_VOID_TYPE, ’set_names’] }

class_name = "TestClass"

value = 123.4

names = (’no’, ’input’)

array = (1,2,3)

rem_device = Dev(’id/python/test4’)

def

def

def

def

def

def

__init__ (self, name):
TacoServer.__init__ (self, name, command_list=self.my_cmd_list)

res = dev_getresource (self.dev_name, "value")

if res != None:
self.value = float(res);
return

state (self):

print ’remote device status:’
print self.rem_device.DevStatus()
return self.dev_state

status (self):
if self.dev_state == DEVUNKNOWN:
self.dev_status

"The device is in an unknown state"

elif self.dev_state == DEVON:
self.dev_status = "The device is switched ON"
elif self.dev_state == DEVOFF:

self.dev_status "The device is switched OFF"

return self.dev_status

on (self):
self.dev_state = DEVON

off (self):
self.dev_state = DEVOFF

read (self):

16.3. SERVER INTERFACE 213

return self.value

def set (self, x):
print x

if x > 100:
Server.error.taco_error = DevErr_ValueOutOfBounds
raise Server.error

elif x < O:
x/ 0

self.value = x
return

def read_signals (self):
return self.array

def read_names (self):
return self.names

def set_names (self, in_names):
#
A copy to a new tuple is needed here!!!
self.names = in_names
will result in a memory fault when
executing read_names!
#
self.names = ()
for i in in_names:
self.names = self.names + (i,)
print self.names
return

def set_array (self, x):
#
A copy to a new tuple is needed here!!!
self.array = x
will result in a memory fault when
executing read_signals!
#
self.array = ()
for i in x:
self.array = self.array + (i,)
print self.array
return

And a script to create the server and start it :

#
Example script how to start a

Taco device server written in Python
#

import TacoServer

214CHAPTER 16. PYTHON AND TACOBY M.C.DOMINGUEZ AND J MEYER

import MyServer

def start():
#
Create two device objects
#
x=MyServer.MyServer (’id/python/testl’)
y=MyServer.MyServer (’id/python/test2’)

#
Put the two objects to be exported
on the network in a tuple

#

dev=(x,y)

#

Export to the network and start the

device server thread

#

With a device server definition in the resource
database as:

Python/test/device: id/python/testl \
id/python/test?2

#

#

TacoServer.server_startup (dev, process_name=’Python’, server_name=’test’)

16.3.2 Example 2

Here is a second example on how to write a device server in Python :

from TacoServer import *

class YourServer (TacoServer):
"This is another test class"

Common variables for a class

cmd_list = { DevState : [D_VOID_TYPE, D_SHORT_TYPE , ’state’],
DevStatus: [D_VOID_TYPE, D_STRING_TYPE, ’status’],
Dev0pen: [D_VOID_TYPE, D_VOID_TYPE , ‘’open’],
DevClose: [D_VOID_TYPE, D_VOID_TYPE , ’close’],
DevReadSigValues: [D_VOID_TYPE, D_VAR_FLOATARR,’read_signals’]}

class_name = "YourTestClass"

value = 123.4

def __init__ (self, name):
TacoServer.__init__ (self, name)
return

def state (self):
return self.dev_state

16.3. SERVER INTERFACE 215

def status (self):
if self.dev_state == DEVUNKNOWN:

self.dev_status = "The device is in an unknown state"
elif self.dev_state == DEVOPEN:

self.dev_status = "The device is Open"
elif self.dev_state == DEVCLOSE:

self.dev_status = "The device is Closed"

return self.dev_status

def open (self):
self.dev_state = DEVOPEN

def close (self):
self.dev_state

DEVCLOSE

def read_signals (self):
signals = (self.dev_state, self.value)
return signals

For more information please contact the authors directly - domingue@esrf . fr and
meyer@esrf.fr.

216 CHAPTER 16. PYTHON AND TACOBY M.C.DOMINGUEZ AND J MEYER

Chapter 17

Access Control and Security
by J. Meyer

17.1 Introduction

In TACO an object can be a physical piece of hardware, an ensemble of hardware,
a logical device or a combination of all these [1]. Objects (devices) are created,
exported and stored in a process called a device server. Every device is exported
with a unique three field name consisting of DOMAIN/FAMILY /MEMBER
and understands a set of commands which are specific for a class of objects in the
device server. Every exported object can be accessed via the Remote Procedure
Call (RPC) interface of the device server.

A device server client uses the Application Programmers Interface (API) to access
devices. The API is based on the file paradigm which consists of opening the
file, reading/writing to the file and then closing the file. In the device server
API paradigm these actions are importing, accessing and freeing the device
connection [1].

17.2 The Problem

One problem of TACO was the open access to devices from all over the network
and by all users on the network. Access restrictions were only possible by system
administration means, like restricted network access.

It was not possible to protect sensitive actions on devices because, once a device was
imported, all commands could be executed. Also no possibility was given to block
a device in a kind of single user mode to do some action which required exclusive
access for a user (e.g. tuning or calibration of hardware).

To solve the above mentioned problems, a database supported security system was
needed. Sufficient control over users and groups of users, which are allowed to access
devices in the control system, had to be given. In order not to be dependent on
machines where the control system is running, access control for networks and hosts
had to be added. A list of hierarchical rights was established to specify access modes
to devices. Combining a minimal access right with a command of a device, allows
a protection for critical actions. A single user mode was added to give clients the
possibility to be sure, that a sequence of commands on a device is not interrupted
by other clients.

The solution described has been modelled on the Amoeba distributed operating
system [3] capability lists and the UNIX access control lists. Development effort

217

218 CHAPTER 17. ACCESS CONTROL AND SECURITY BY J.MEYER

has gone into making the system as flexible as possible, with reconfigurable access
rights at runtime and fast access verification for received RPC calls in a device
server.

17.3 The Model

17.3.1 Users, Groups and Networks

To guarantee sufficient access control the following points have to be verified with
the reference data in the security database:

e If a user is explicitly specified in the database, the user name and the user
ID must be correct. This avoids problems with badly configured user ID‘s.

e If no user data is available, the actual group name and group ID must be
correct.

e If the user or his group are verified, the IP-address of the host, where the
client was started, has to be compared with the specified network access for
the user or his group.

e If neither user data nor group data is available, only the specified minimal
default access to the control system can be given. Also for no network access
specifications, a minimal default access can be granted.

Figure 1 shows an example of possible access security database specifications.

Entry Name ID Network Access
user meyer 215
[Tuser | taurel | 21 | 160.103.10 |
160.103.5.68
[user | operator | 226 | 160.103.10 |
160.103.11
160.103.12
group comp 101 160.103
[group | machine | 102 | 160.103.10 |
160.103.11
160.103.12
default 160.103.10

Figure 17.1: The control system access table

17.3.2 Access Rights

Access rights on devices are requested by clients, when opening the connection
(importing) to a device. All predefined rights are hierarchical. A requested access
is limited by the highest possible right for a user or a group in the security database.
Possible rights are:

e NO_ACCESS : No access to the device at all.

e READ_ACCESS : Commands which only read values from the device require
the minimum access right READ_ACCESS.

17.3. THE MODEL 219

e WRITE_ACCESS : All commands which read and write values require the
minimum access right WRITE_ACCESS.

e ST WRITE_ACCESS : If this access right is requested, the device will be set
into single user mode and all commands which require WRITE_ACCESS can
be executed. At the same time other clients can execute read commands.

e SU_ACCESS : All commands which are classified as critical actions require
super user (SU_ACCESS) right to be executed. All read and write commands
can also be executed.

e ST SU_ACCESS : If this access right is requested, the device will be set into
single user mode and all commands which require SU_ACCESS can be exe-
cuted. At the same time other clients can execute read commands.

e ADMIN_ACCESS : The ADMIN_ACCESS is the highest access right. It will
set the device into the single user mode and will cancel another single user

session with lower access right. Even read commands from other clients are
blocked.

To change the access right to a device, the device connection must be freed and
afterwards reestablished with the new right.

17.3.3 Domain, Family or Member

Access rights on devices for users or groups have to be specified in the security
database. To avoid entries for every device, the TACO device naming scheme DO-
MAIN/FAMILY /MEMBER is used to enter wide range access specifications
for users or groups. Device access right entries in the security database are possible
for

e DOMAIN = a whole area of the ESRF,
e DOMAIN/FAMILY = a class of devices inside a domain,
e DOMAIN/FAMILY/MEMBER = a single device.

Figure 2 shows an example of possible device access specifications for the device,
its family or its domain.

Entry |Domaine/Family/Membef Name Acess
user SR/V-RV/C1-3 meyer SU_ACCESS
user SR/V-RV meyer SI_WRITE_ACCESS
taurel WRITE_ACCESS
fuser | SR [operator | WRITE-ACCESS |
meyer WRITE_ACCESS
group | SR/V-RV/C1-3 dserver ADMIN_ACCESS
[group | SR/V-RV | vacuum | SLSU.ACCESS |
group | SR dserver WRITE_ACCESS
operator | WRITE_ACCESS
default READ_ACCESS

Figure 17.2: The device access table

220

CHAPTER 17. ACCESS CONTROL AND SECURITY BY JMEYER

The access control system uses the following hierarchy to find the maximal access
right, for a requesting client, in the database. The device can only be imported, if
the requested access is lower or equal the maximal access right.

1

2.

3.

Verify the user entry on the device (DOMAIN/FAMILY/MEMBER).
If nothing was specified, verify the user entry of the device class (DOMAIN/FAMILY)
If nothing was specified, verify the user entry for the domain.

If nothing was specified, verify the group entry in three steps as mentioned in
the last three points.

If no maximal access right was found in the user or group entries, a default
value will be applied.

17.3.4 Verification Speed and Reliability

In contrast to the design document of the security system, the final implementation
is based more on a good integration to the system than on a maximised verification
speed. Experience with the first version has shown that reliability and adaptation
to the general system design are more important than the highest possible verifica-
tion speed. In the first version it was tried to add to a connectionless (UDP) device
server, information on client connections. This kind of connection information is
very hard to verify and impossible to guarantee as valid information. Out of this
reason, the design had to be changed. Only the information on a single user con-
nection was left in a device server. To make a single user connection reliable, it is
always a TCP connection. A dead single user client can be detected and deadlocks
avoided.

Client authentication happens only once during the import of the first device. For
all other new connections only the device access must be verified. That requires
one or two database requests. A security key is created on the client side after
the import off a device. By verifying this key all parameters for the open client
connection to a device can guaranteed unchanged. Nothing can be modified on
the connection. Parameters necessary to check the device and command access are
send to the server with every access. The parameters are checked on the server side.
Sending parameters and verifying for every server access slow down the system, but
is better adapted to a connectionless system and runs more reliable. Figure 3 and
figure 4 show how the security key is created and how parameters are transferred.

17.4 Integration into TACO

The security system is created as an optional part of TACO. At startup time a
resource of the central control system process (Network Manager) allows to sup-
press or add the security system. This flexibility is necessary because the security
system will be implied for the machine control, but it is up to every beam line
responsible to use it in the beam line control systems.

To make database access as general as possible, the resource database was reused
for security data. A specially protected table (SEC domain) was added to avoid
any overwriting of data by unauthorised persons. With this solution all available
database access functions of the control system could be reused. This might be not
the fastest solution. One can imagine to suppress one or two database accesses by
creating a new security database and security service. But a major advantage of
the current solution was the very easy maintenance of a well defined interface.

17.5. COMPLEX ACCESS HANDLING 221

Client Server
| |
. , , .
Private : API API . Private
1 1
i | Client ID, Check of import| |
' | Access right, > s !
E RPC clnt handle] permissions E
Access ' '
handle ! Y Y \
____________ H
JULIHIN i Create and store Store single !
ACC?SS right, '| | the security key user access data| !
Device 1D, . |
RPC client ! A !
handle ! Y !
1 1
30000 1y | Get device ID | Set single user !
1 | and store access [mode .
| |
1 1
Figure 17.3: The security key creation
Client Server
1 1
Private i API API . Private
1 1
1
Access i Client ID, Verify access '
handle 1 : to device and [—4
____________ ! Security key command ' Device
1 1
................ ! H server
Access right, ! Y L} . commands
Device ID, 1 . Get '
RPC client | 1,] verify the o| Access right, |
handle i | security key Device 1D, '
................ : Client ID :
1 1
1 L

Figure 17.4: Access control with the Security Key

The main part of the security system is part of the API library, added to the import,
access and free functions. Figure 5 shows the security aspects added to the API
library.

17.5 Complex Access Handling

The device server model (ref. [2]) of TACO allows two major ways for a device
server to communicate with other devices.

1. The server - server connection (figure 6)
Device servers can communicate with devices, served by any server in the
control system, via the RPC based API library functions.

2. The internal communication (figure 7)
The device server model also allows device classes to be linked into one server
process. Devices of the different classes can be exported and accessible by
clients via the network. Also a fast way of internal communication exists. It

222 CHAPTER 17. ACCESS CONTROL AND SECURITY BY J.MEYER

Client Server

Network [, Security
Manager started ? | Create and store | | Set a single

A
=
5=}
<}
=
o+

security key ™ user mode
L_access _______. 4| | }- access __ ______]
g R Verify Create and verify _| Verify device and
ecurity scurity key ”| command access
access
Database
| _free ________ 1| | L. free ________]
Destroy Free a single

Y

security key user mode

Figure 17.5: The security system integration to the API

| Client | | Client |
A Server
. Server APT
. Client APT
A Y Y
| Server | | Server

Figure 17.6: Server - server connections

uses the same import, access and free functions for internal communication
without RPCs (see DSN101). Offering the same functionality as the external
API. Proper access control, in the case both interfaces are open for device
access, can be guaranteed in a transparent way for the user.

With the two above mentioned communication schemes access control and security
are guaranteed. Only the user/group ID of a device server process must have the
necessary access rights in the security database. This protects against the starting
of critical device servers by unauthorised persons.

One problem remains and can only be solved by the device server programmer
himself. For example:

What does a single user mode mean for a device which itself accesses two underlying
devices in other servers? Do these low level devices also have to be set in single user
mode or would this disturb other clients using the same low level devices? This
kind of access control over hierarchical levels can not be given automatically. Needs
might be different from case to case and requirements are only known to the device
server programmer. The access control system can only give the tools to handle
complex access hierarchies.

17.6 Conclusion

Access control and security in a distributed control system has been presented.
Three points should be mentioned again:

(1) With the TACO device naming convention a wide range access could be imple-
mented very easy. (2) The reuse of the resource database and its services offers a

17.6. CONCLUSION 223

Client Client

Server Process

H External '
server API

Exported device

Exported device
of class X

of class Y

1 1

v Internall oo___._______
! client

v API

'

'

Figure 17.7: Internal and external API

well defined interface and easy maintenance of the security database. (3) Via the
internal and external API, hierarchically structured access levels can be controlled.
The main problem for TACO security is the OS9 operating system which, in the
currently used version, still requires super-user rights to execute RPCs.

Effort still has to go into a so-called device black box. A record should be kept of
the last n commands executed on a device. This record can be dumped or stored in
a database for offline analysis. It enables diagnostics to be carried out in the event
of device failure or crash.

17.6.1 The Current Implementation

Security for a control system is used if the Network Manger was started with the
security option:

Manager -security

As default the security system is switched off.

If a device server exited and comes back to action, all clients which had open con-
nections will be reconnected automatically with the device accesses they had before.
During the reconnection the security database is read again and changes are ap-
plied.

To achieve proper access control in a device server, the functions dev_import(),
dev_putget(), dev_put() and dev_free() must be used for internal communica-
tion as described in DSN101.

A single user connection is always a TCP connection. A died single user or admin-
istrator client will be detected on the next access to the server and the single user
lock will be freed.

It is not possible to change the RPC protocol for a connection if a single user mode
is active. When freeing a single user mode, the protocol on the connection will be
set back to the initial protocol.

Tools are now available to handle security resources easily.

e To protect the SEC table in the resource database a password can be set,
which will be requested on every update of the database.

sec_passwd database_name

No password is set on libra, to give you the chance to modify and test every-
thing.

224 CHAPTER 17. ACCESS CONTROL AND SECURITY BY J.MEYER

e To read all accesses specified for a user or a group in the security table.
sec_userinfo [-u user.name] [-g group_-name]

If no user name or group name is specified, the actual login name and group
accesses are listed.

e To list all users and groups which have a specified access right on a domain,
a family or a member.

sec_objinfo domain[/family][/member]

Attention: A list of accesses on a family will not list users or groups with the
right to access the whole domain!

17.6.2 How to get started?

To install a device server and his clients with configured access control, three steps
are necessary:

1. The minimum access right for every command of the device server has to be
added to the extended command list.

static DevCommandListEntry commands_list[] = {

{DevState, dev_read_state, D_VOID_TYPE, D_LONG_TYPE, READ_ACCESS},
{DevStatus, dev_read_status, D_VOID_TYPE, D_STRING_TYPE, READ_ACCESS},
{Dev0pen, dev_open_valve, D_VOID_TYPE, D_VOID_TYPE, WRITE_ACCESS},
{DevClose, dev_close_valve, D_VOID_TYPE, D_VOID_TYPE, WRITE_ACCESS},

{DevSetCalib, dev_set_calib, D_VAR_LONGARR, D_VOID_TYPE, SU_ACCESS},
};

Dangerous commands can be protected and only be executed by a client with
super user rights or an administrator.
Remember:

e A device is locked in single user mode. Other clients than the single user
can only access commands with the minimum access right READ_ACCESS.

e Recompiling an old device server with unchanged command list will set
the minimum access right for all commands to WRITE_ACCESS.

. As a second step, the access control and security resources for users and groups
using the device server must be set up.

#

default access right, if no user or group entry can be

found.

#

SYS/MINIMAL/ACC_RIGHT/default: READ_ACCESS, 160.103.5, \
160.103.2.132

#

user resources for the SY domain

#

SYS/USER/ACC_RIGHT/sy: meyer, READ_ACCESS, \

17.6. CONCLUSION 225

taurel, WRITE_ACCESS
#
user resources for device families in the SY domain
#
SYS/USER/ACC_RIGHT/sy|v-rv: meyer, SU_ACCESS, \
0s9, WRITE_ACCESS
#
user resources for devices in the SY domain
#
SYS/USER/ACC_RIGHT/sy|v-rv|s9: meyer, ADMIN_ACCESS
SYS/USER/ACC_RIGHT/sy|v-rv|s2: meyer, ADMIN_ACCESS
#
HHH R S
#
#
group resources for the SY domain
#
SYS/GROUP/ACC_RIGHT/sy: dserver, WRITE_ACCESS, \
os9, READ_ACCESS
#
group resources for device families in the SY domain
#
SYS/GROUP/ACC_RIGHT/sy|v-rv: vacuum, SU_ACCESS
#
group resources for devices in the SY domain
#
SYS/GROUP/ACC_RIGHT/sy|v-rv|sl: dserver, ADMIN_ACCESS
#
HHHH A I
#
user identification information
#
SYS/USER/IDENT/meyer: 215, 160.103.5.54, \
160.103.2.132
SYS/USER/IDENT/taurel: 261, 160.103.2, \
160.103.5.68
#
group identification information
#
SYS/GROUP/IDENT/dserver: 101, 160.103
SYS/GROUP/IDENT/vacuum: 310, 160.103.4.29
SYS/GROUP/IDENT/0s9: 0, 160.103.4.218
#

The resources must be stored in the SEC table of the resource database. The
SEC table on libra is not protected. Everybody can try and set up some
resources. To avoid the total chaos when redefining the default access or some
global access on a whole domain, please put your resource files in the directory:

226

CHAPTER 17. ACCESS CONTROL AND SECURITY BY JMEYER

libra: /users/d/dserver/dbase/res/SEC

Use the database tools find out the actual database contents and why an
access was denied.

Specifying access control and security resources for OS9 clients, use as pre-
defined user and group name os9 with the uid = 0 and the gid = 0. Other
names are not possible, because any OS9 user must have the uid = 0 and
super user rights on a crate to run a device server. The name was changed
from root to 0s9 to avoid conflicts with the UNIX user root.

The client has to request how he wants to access a device, when importing
the device.

#include DevSec.h

char *dev_name = "SY/V-RV/S1";
long readwrite = WRITE_ACCESS;
devserver PVv;
long error = 0;
/*
* import the device
*/
if (dev_import (dev_name, readwrite, &pv, &error) == DS_NOTOK)
{
return (DS_NOTOK) ;
}

For Example, the requested WRITE_ACCESS was verified in the security
database and granted. The client can execute all commands on the device
which are specifyed with READ_ACCESS or WRITE_ACCESS in the com-
mand list of the device server. A command specified with SU_ACCESS cannot
be executed.

Remember:

e The access rights S WRITE_ACCESS and SI_.SU_ACCESS will set the
device into single user mode.

e Trying to import a device with S WRITE_ACCESS or SI.SU_ACCESS
if another single user is already logged in, will return an error.

e Importing a device with ADMIN_ACCESS if another single user is al-
ready logged in, will cancel the old single user session and set the device
into administration mode.

e Importing a device with any other access right will work, but only com-
mands which are specified in the command list for READ_ACCESS can
be executed. All other commands are locked for the time the single user
is logged in.

e In DevSec.h a list is defined, combining the defined access rights and
the rights as a string. This can be used to handle interactive input of
access rights.

typedef struct _DevSecListEntry {
char *access_name;

17.6. CONCLUSION 227

long access_right;
} DevSecListEntry;

static DevSecListEntry DevSec_List[] = {

{"NO_ACCESS", NO_ACCESS},
{"READ_ACCESS", READ_ACCESS},
{"WRITE_ACCESS", WRITE_ACCESS},
{"SI_WRITE_ACCESS", SI_WRITE_ACCESS},
{"SU_ACCESS", SU_ACCESS},
{"SI_SU_ACCESS", SI_SU_ACCESS},
{"ADMIN_ACCESS", ADMIN_ACCESS},
};
#define SEC_LIST_LENGTH (sizeof (DevSec_List)/sizeof (DevSecListEntry))

17.6.3 Pending Problems
Here is a list of pending problems, which will be solved in the coming releases.

e The search in the command list of a device server, for the minimum access
right of a command and the command function, is not yet optimised. The
command list is searched twice, because the command handler interface could
not be changed for compatibility reasons.

228 CHAPTER 17. ACCESS CONTROL AND SECURITY BY J.MEYER

Chapter 18

Standard Makefiles using
GNU make (gmake)
by A.Gotz

18.1 Introduction

The TACO device servers have until recently used conditional Makefiles which re-
quired processing by a program based on a mixture of lex and yacc and cpp before
calling make. Although this method was well-adapted to writing Makefiles which
supported multiple platforms it was non-standard and always posed a problem when
moving to a new platform because it often involved porting lex and yacc as well.
During the port of TACO to Linux it was decided to move to a more standard
method for conditional Makefiles and adopt the GNU make tool. GNU make (some-
times called gmake) offers a wide range of facilities including conditional statements,
it has been ported to a wide variety of platforms and is well-documented.

This chapter describes the standard way to write GNU Makefiles for building TACO
source code in general and device servers in particular.

18.2 Philosophy

The philosophy adopted for TACO Makefiles is to have one Makefile per project
which supports multiple platforms as opposed to one Makefile per platform per
project.

Once this philisophy is accepted there is still the choice to be made between a
so-called master Makefile from which platform dependant Makefiles can be gen-
erated (using a tool like imake) or a single Makefile with conditional statements
(as supported by GNU make for example) for handling platform dependancies at
make time. The latter approach is the one adopted for TACO and described in this
chapter.

18.3 GNU Make Commands

GNU make extends the standard Unix make with a number of commands. The
most important of these are :

1. ifdef wariable-name [else] endif - conditional statement which can be
used to detect the presence of variable to determine which branch of the

229

230CHAPTER 18. STANDARD MAKEFILES USING GNU MAKE (GMAKE)BY A.GOTZ

if statement will be executed. TACO uses the conditional statement to dis-
tinguish between different platforms e.g.

ifdef linux
CC = gcc
endif

2. ifndef wariable-name [else] endif - conditional statement which can be
used to detect the absence of a variable

3. ifeq (argl,arg2) [else] endif - test if argl and arg2 are identical (argl
and arg2 are variable references)

4. ifneq (argl,arg2) [else] endif - test if arg! and arg2 are different (argl
and arg2 are variable references)

In addition there are a host of string substition and analysis functions e.g. subst,
strip, findstring, filter, sort, as well as built-in expansion functions e.g.
dir, suffix, basename, join, wildcard which can be used to define arg! and
arg2. Refer to chapter 8 of the manual.

18.4 Standard Symbols

The following standard symbols should be used to identify the presence of a platform

1. unix - Unix like platform (HPUX, Solaris, SUN, Linux, LynxQOS)
2. _unix__ - Unix like platform (HPUX, Solaris, SUN, Linux, LynxOS)

_hpux - HPUX running on any architecture

- w

_-hpux9000s700 - HPUX running on PA-RISC1.1

o

_-hp9000s700 - HPUX running on PA-RISC1.1
_solaris - Solaris running on SPARC
__solaris__ - Solaris running on SPARC

linux - Linux running on Intel 80x86

© » N o

lynxos - LynxOS running on Motorala 68040
10. _UCC - (new) Ultra C/C++ compiler for OS9
11. sun - SunOS running on SPARC

12. 0SK - (old) Unibridge compiler for OS9

18.5 Standard Targets

Each Makefile must have the following standard targets (generic scripts depend on
them existing) :

1. all - make all binary targets (should be first target in Makefile so that it is
taken as default)

18.6. SCRIPTS 231

2. icode - make icode versions of object files for Ultra C++/C

3. install - copy binaries to a common directory and update object files in
library (if one exists)

=~

clean - clean up so that a call to make will regenerate binaries
clobber - remove all binaries and make clean
lock - check out all source files (under RCS control)with lock

co - check out all source files (under RCS control) without lock

® N o

ci - check in all source files (under RCS control) with lock message indicating
why they are being checked in (LOCKMSG="my message”)

18.6 Scripts

To make life easier for TACO programmers a set of one-liner scripts have been
defined for each platform which call gmake with the appropriate variables defined :

1. hpuxmake - calls gmake with wniz=1 __uniz__=1 __hpuz=1 __hp9000s700=1
__hpuz9000s700=1

2. solmake - calls gmake with __uniz__=1 uniz=1 __solaris__=1 _solaris=1
3. ultracmake - calls gmake with _UCC=1

4. linuxmake - call gmake with linuz=1 uniz=1 __uniz__=1

5. sunmake - calls gmake with __uniz__=1 uniz=1 sun=1

These scripts can be found in /users/d/dserver/make/bin on the file server(s).
gmake is also available as binary for all supported platforms and can be found in
/users/d/dserver/make/bin/$0S where $OS stands for the operating system e.g.
s700, solaris, sund (gmake is the standard make on Linux).

For those sites running TACO who support only one platforms it would be advisable
to simple define the appropriate variables for that platform in the Makefile and then
call gmake without any arguments.

18.7 Example Makefile

Here is a full example of a typical Makefile to make device servers using GNU make
(cf. classes/template/simple/src/Makefile):

#

RcsID = " $Header: /libra/users/d/dserver/doc/notes/DSN122/RCS/DSN122.tex,v 1.1 1997/01/15
#

ok ok ok ok ok ok sk sk sk ok o ok ok ok sk sk ok ok ok ok o ok ok ok sk sk sk sk ok ko o ok ok ok sk ok sk sk sk ko ok o ok ok ok ok sk ok sk ok ok o ok ok ok ok ok ok kK ok ok ok
#

File: Makefile

#

Project: <PROJECT>

#

Description: GNU Makefile for Template device server

#

Author(s): <AUTHOR>

232CHAPTER 18. STANDARD MAKEFILES USING GNU MAKE (GMAKE)BY A.GOTZ

#

Original: <DATE>

#

$Log: DSN122.tex,v $

Revision 1.1 1997/01/15 06:18:54 goetz

Initial revision

#

#

Copyright (c) 1996 by European Synchrotron Radiation Facility,

Grenoble, France

#

ok ke ok s oo o ke ok ks o ok sk ok ks o o ok ks e ok ks o ok sk s o ke ks s o e ke s e sk s o o e sk s o e ok sk e o ok
GNU Makefile Generated by the Automatic Class Generation Tool, <REVISION>
<GENERATIONDATE>.

#

This Makefile works with the GNU make (sometimes called gmake)
It makes use of the GNU make conditional statements to support
multiple platforms. To use this makefile for a particular platform
call GNU make with the appropriate symbol for that platform

defined e.g. "gmake __hp9000s700=1 unix=1 all". The following symbols
are used to identify the following platforms :

#

__hp9000s700 = HPUX 9000 series 700

_solaris = Solaris

sun = Sun0S

_uccC = 0S9 Fastrak Ultra-C Compiler

unix = various unix flavours (Solaris, HPUX, Lynx, Linux)
lynx = Lynx0S

Linux = Linux

#

__
#

The variables DSHOME is passed to the Makefile

as input argument or via the environment.

#

For UltraC use the settings for the environment variables:

MwOS = /usr/local/MWO0S

PATH = $PATH: $MWOS/UNIX/bin/hp97k

CDEF = $MW0S/0S9/SRC/DEFS

CDEFESRF = /usr/local/os9/dd/DEFS

CLIB = $MW0S/0S9/LIB

CLIBESRF = /usr/local/os9/dd/LIB

#

f-————_—_———————————————————————————— -
#

ifdef _UCC

LIB_HOME = $(DSHOME) /1ib/os9/ucc

0BJS_HOME = $(DSHOME)/1ib/os9/ucc/objs

INSTALL_HOME = $(DSHOME)/bin/os9/ucc

endif

ifdef lynx

LIB_HOME = $(DSHOME)/1ib/lynxos

18.7. EXAMPLE MAKEFILE 233

INSTALL_HOME = $(DSHOME)/bin/lynxos

endif

ifdef __hp9000s700

LIB_HOME = $(DSHOME) /1ib/s700
INSTALL_HOME = $(DSHOME)/bin/s700
endif

ifdef sun

LIB_HOME = $(DSHOME) /1ib/sun4
INSTALL_HOME = $(DSHOME)/bin/sun4
endif

ifdef _solaris
LIB_HOME = $(DSHOME)/lib/solaris
INSTALL_HOME $ (DSHOME) /bin/solaris

endif
ifdef linux
LIB_HOME = $(DSHOME)/1ib/linux
INSTALL_HOME = $(DSHOME)/bin/linux
endif

All include file and standard library pathes
#
make sure to get always the new include files
under ../include
#
INCLDIRS = -I ../include \
-I $(DSHOME)/include \
-I $(DSHOME)/include/private

All necessary compiler flags for UNIX and 0S9
#
ifdef _UCC
The C Compiler for 0S9
CC = /usr/local/MWOS/UNIX/bin/hp97k/xcc
Libraries
LIBDIRS = -L $(LIB_HOME) -L $(CLIB)
LFLAGS = $(LIBDIRS) \
-1 dsclass \
-1 dsapi \
-1 dsxdr \
-1 dbapi \
-1 dcapi \
-1 rpclib.1 \

-1 netdb_small.l \
-1 socklib.l \

-1 sys_clib.1l \

-1 unix.1l

ICODE_LFLAGS = $(LIBDIRS) \

234CHAPTER 18. STANDARD MAKEFILES USING GNU MAKE (GMAKE)BY A.GOTZ

-Wi,-1=$(LIB_HOME)/libdsapi.il \
-Wi,-1=$(LIB_HOME)/libdsxdr.il \
-Wi,-1=$(LIB_HOME)/libdbapi.il \
-Wi,-1=$(LIB_HOME)/libdcapi.il \
-1 dsapi \

-1 rpclib.1 \

-1 netdb.1 \

-1 socklib.1l \

-1 sys_clib.1l

Compiler Flags with ANSI standart for 0S9
CFLAGS = -mode=c89 -i -to osk -tp 020 $(INCLDIRS)
ICODE_CFLAGS = -mode=c89 -i -j -0 7 -to osk -tp 020 $(INCLDIRS)
NAME = -o $e

endif

ifdef unix

The C Compilers for UNIX
ifdef sun

CC = /usr/lang/acc

endif

ifdef _solaris

CC = /opt/SUNWspro/SC4.0/bin/cc
endif

ifdef lynx

CcC = gcc

endif

ifdef __hpux

CC = /bin/cc

endif

ifdef linux

cC = gcc

endif

Libraries

LIBDIRS = -L $(LIB_HOME)

ifdef _solaris

LFLAGS = $(LIBDIRS) -ldsclass -ldsapi -ldbapi -1ldsxdr -ldcapi -1lnsl -lsocket
else

LFLAGS = $(LIBDIRS) -ldsclass -ldsapi -ldbapi -1ldsxdr -ldcapi -1lm

endif

NAME = -0
endif #unix

Compiler flags with ANSI standart for UNIX
ifdef __hpux

CFLAGS = -Aa -D_HPUX_SOURCE $(INCLDIRS)

endif

ifdef sun

CFLAGS = -Aa $(INCLDIRS)

endif

ifdef _solaris

CFLAGS = -Xa $(INCLDIRS)

18.7. EXAMPLE MAKEFILE 235

endif

ifdef lynx

CFLAGS = -ansi -Dlynx -Dunix -X $(INCLDIRS)
endif

ifdef linux

CFLAGS = —ansi -Dlinux -Dunix $(INCLDIRS)
endif

RCS options to lock and check out a version.
Or to check in a new version.

#

RCS lock optiomns

RCSLOCK = co -1 -r$(VERSION)

RCS check out optiomns

RCSCO = co -r$(VERSION)

RCS check in options

RCSCI = ci -u -f -s"Rel" -r$(VERSION) -m"$(LOCKMSG)"

Class library

The object file representing the class has
to be added to the class library.

#

CLASS_LIB libdsclass.a

CLASS_OBJS = Template.o

#

All Files needed for the Server and the client
#
all include files
INCL = TemplateP.h \
Template.h
source files
SRC = Template.c \
startup.c \
ps_menu.c
object files
SVC_0BJS = Template.o \
startup.o
SVC_ICODE = Template.ic \
startup.ic
CLN_OBJS = ps_menu.o

What has to be made
#

Names of executables in the home directory

236 CHAPTER 18. STANDARD MAKEFILES USING GNU MAKE (GMAKE)BY A.GOTZ

SERVER
CLIENT

#

#

SVC_INST
CLN_INST
INCL_INST
INCLP_INST

Templateds
template_menu

Names of executables

and include files in the installation directories
$ (SERVER)

$ (CLIENT)

Template.h

TemplateP.h

build server and client

#
ifdef _UCC
#

.SUFFIXES:
.c.ic:

all:

$ (SERVER) :

$(CLIENT) :

icode:

endif

ifdef unix
all:

$ (SERVER) :
$ (CLIENT) :
endif

#

#
#

$(CLASS_LIB):

ifdef _UCC
#

Rule for making 0S-9 relocatable files

.0 .C

$(CC) $(CFLAGS) -efe $<

$(CC) $(CFLAGS) -c $<

$ (SERVER) $(CLIENT)

$(SVC_0OBJS)
$(CC) $(CFLAGS) $(NAME) $(SVC_0BJS) $(LFLAGS)

$(CLN_0OBJS)
$(CC) $(CFLAGS) $(NAME) $(CLN_0BJS) $(LFLAGS)

$ (SVC_ICODE)

echo Linking with icode libraries!
$(CC) $(ICODE_CFLAGS) -o $(SERVER) $(SVC_ICODE) $(ICODE_LFLAGS)

$ (SERVER) $(CLIENT)
$(SVC_0BJS)
$(CC) $(CFLAGS) $(NAME) $@ $(SVC_OBJS) $(LFLAGS)

$(CLN_0OBJS)
$(CC) $(CFLAGS) $(NAME) $@ $(CLN_0BJS) $(LFLAGS)

Add object file representing the class
to the class library.

$(CLASS_0OBJS)

For os9 all object files are kept are

18.7. EXAMPLE MAKEFILE 237

kept in a special directory, because
the library has to be built by a cat
of all object files.

H B H

cp $(CLASS_0BJS) $(0BJS_HOME)
libgen -c $(0BJS_HOME)/?*.0 -o=$(0BJS_HOME)/$(CLASS_LIB)
cp $(0BJS_HOME)/$(CLASS_LIB) $(LIB_HOME)
rm -rf $(0BJS_HOME)/$(CLASS_LIB)
endif
ifdef unix
ar rv $(LIB_HOME)/$(CLASS_LIB) $(CLASS_O0BJS)

endif
#
install executables
#
ifdef _UCC
install: $ (SERVER) $(CLIENT) $(CLASS_LIB)
cp $(SERVER) $(INSTALL_HOME)/$(SVC_INST)
cp $(CLIENT) $(INSTALL_HOME)/$(CLN_INST)
endif
ifdef unix
install: $ (SERVER) $(CLIENT)
cp $(SERVER) $(INSTALL_HOME)/$(SVC_INST)
cp $(CLIENT) $(INSTALL_HOME)/$(CLN_INST)
endif
#
install include files
#
rm -f $(DSHOME) /include/$ (INCL_INST)
cp ../include/$ (INCL_INST) $(DSHOME)/include
chmod 664 $(DSHOME)/include/$(INCL_INST)
rm -f $(DSHOME)/include/private/$(INCLP_INST)
cp ../include/$ (INCLP_INST) $(DSHOME)/include/private
chmod 664 $(DSHOME)/include/private/$(INCLP_INST)
clean:
-rm -f $(SVC_0BJS)
-rm -f $(CLN_0OBJS)
-rm -f $(SVC_ICODE)
-rm -f *.i
clobber: clean
-rm -f $(SERVER)
-rm -f $(CLIENT)
lock:

$ (RCSLOCK) $(SRC)
cd ../include; $(RCSLOCK) $(INCL); cd ../src

238CHAPTER 18. STANDARD MAKEFILES USING GNU MAKE (GMAKE)BY A.GOTZ

co:
$ (RCSCO) $(SRC)
cd ../include; $(RCSCO) $(INCL); cd ../src

ci:

$(RCSCI) $(SRC)
cd ../include; $(RCSCI) $(INCL); cd ../src

18.8 Further Reading

1. GNU Make by Richard M. Stallman and Roland McGrath

Chapter 19

Basic steps to install and
configure a device server

by A.Gotz

1. Write your new class (e.g. NewClass).
2. Write the startup for the new class (start.C).
3. Compile and link the device server (e.g. Newds).

4. Create a resource file containing a list of devices to be created for a copy
of the device server.! The resource file must contain at least one line which
consists of the device server name followed by the keyword device colon and
at least one device for a valid domain (e.g. TL1, SY, TL2, SR, ID, EXP at
the ESRF). An example for the New class would be :

newds/test/device: id/new/1

The resource file can contain other resources which are device specific. The re-
source file must be stored in the resource base directory (e.g. /users/d/dserver/dbase/res
on libra for the test control system used at the ESRF).

5. If your device server defines new commands and/or errors (cf. DSN/096) then
define a class base number (e.g. DevNewBase) and define the commands in
the resource file e.g.

#

test device for the Newds device server
#

newds/test/device: id/new/1

#

private commands

#

cmds/4/6/1: "DevNewCmd1"

This is all explained in the section on ” Adding Private Commands”.

Leach copy of a device server has its own so-called “personal name” which is used to identify,
the full server name is therefore the name of the executable followed by the personal name e.g.
Newds/test

239

240CHAPTER 19. BASIC STEPS TO INSTALL AND CONFIGURE A DEVICE SERVERBY A.GOTZ

6. Update the resource file in the static database using the command db_update
file (where file is the resource file name w.r.t to the resource base directory)
or greta (the graphical resource editor).

7. Start the device server with the personal name specified in the resource file
and the option -m (e.g. Newds test -m), make sure the environment variable
$NETHOST is pointing to a valid control system nethost (e.g. libra at the
ESRF).

Chapter 20

A

tool to test a TACO

control system
by E.Taurel

20.1 Introduction

testes is a TACO tool built to test a control system. It is able to test from a single
device server to a complete TACO control system. Testing a device server is done
by sending a network request to it and waiting for the answer. It does not test
the device served by the device server but only the device server ability to answer
to netwok request. The tool takes its input directly from the TACO device server
database and must run on the same computer than the database. It is available for
HP-UX, SunOS and Solaris.

20.2 Usage

Five option are available :

-k to test a TACO control system kernel servers. The kernel servers are :

— The manager
— The database server

— The data collector server(s) if the control system is running with a data
collector

-d to test a device server. The full device server name must be specified
(device server executable name/personal name)

-h to test all the device server running on a specific host. The host name
must be specified.

-a to test a complete control system. In this case, the tool will test the kernel
servers and all the device servers running on all the hosts used in the control
system.

The last option -v is a verbose option. This option has a meaning only with
the -k,-h and -a options. In verbose mode, the tool displays the answer of all
the tested device server. In non verbose mode, only the faulty device server
are reported to the user.

241

242CHAPTER 20. A TOOL TO TEST A TACO CONTROL SYSTEMBY E.TAUREL

If the option -a is used, the tool will inform you of :
e All the missing device servers which have not been started.
e All the started but dead device servers.

A manual page is available under UNIX.

20.3 Usage example

20.4 Testing a device server

Test of a running device server called PneumValves started with the personal name
sr_c02.

$testcs -d pneumvalves/sr_c02

DS pneumvalves/sr_c02 : UDP version 1 ==> 0K
DS pneumvalves/sr_c02 : TCP version 1 ==> 0K
DS pneumvalves/sr_c02 : UDP version 4 ==> 0K
DS pneumvalves/sr_c02 : TCP version 4 ==> 0K

$

If the device server is badly killed (with a kill -9 under UNIX or if the device server
has crashed).

$testcs -d pneumvalves/sr_c02

DS pneumvalves/sr_c02 : UDP version 1 ==> NOK, leaving test
DS process PID found in database : 17185

$

If the device server is nicely killed.

$testcs -d pneumvalves/sr_c02
DS pneumvalves/sr_c02 defined in database on host libra but not started

$

If the device server is unregistered from the database (dbset_servunreg or dbm_servunreg
command) or has never been started.

$testcs -d pneumvalves/sr_c02
Device server is not running (PN in db = 0)

$

If the device server is deleted from the database (dbset_servdel or dbm_servdel
command

$testcs -d pneumvalves/sr_c02
Device server not defined in database

$
20.5 Testing control system kernel servers

Example of the testcs answer started with option -k and -v on the ESRF machine
control system

20.6. TESTING ALL THE DEVICE SERVER RUNNING ON A HOST 243

$ testcs -k -v
Manager : UDP version 1 ==> 0K
Manager : UDP version 4 ==> 0K

Database server : UDP version 1 ==> 0K
Database server : UDP version 2 ==> 0K
Database server : UDP version 3 ==> 0K
Database server : TCP version 1 ==> 0K
Database server : TCP version 2 ==> 0K
Database server : TCP version 3 ==> 0K
Data collector read server 1 on gemini : TCP version 1 ==> 0K
Data collector read server 1 on gemini : UDP version 1 ==> 0K
Data collector read server 2 on gemini : TCP version 1 ==> 0K
Data collector read server 2 on gemini : UDP version 1 ==> 0K
Data collector read server 3 on gemini : TCP version 1 ==> 0K
Data collector read server 3 on gemini : UDP version 1 ==> (0K
Data collector read server 4 on gemini : TCP version 1 ==> (K
Data collector read server 4 on gemini : UDP version 1 ==> (K
Data collector read server 5 on gemini : TCP version 1 ==> 0K
Data collector read server 5 on gemini : UDP version 1 ==> 0K

Data collector write server 1 on gemini : TCP version 1 ==> 0K
Data collector write server 1 on gemini : UDP version 1 ==> 0K
Data collector write server 2 on gemini : TCP version 1 ==> 0K
Data collector write server 2 on gemini : UDP version 1 ==> 0K
Data collector write server 3 on gemini : TCP version 1 ==> 0K
Data collector write server 3 on gemini : UDP version 1 ==> 0K
Data collector write server 4 on gemini : TCP version 1 ==> 0K
Data collector write server 4 on gemini : UDP version 1 ==> 0K
Data collector read server 1 on aries : TCP version 1 ==> (K
Data collector read server 1 on aries : UDP version 1 ==> OK
Data collector read server 2 on aries : TCP version 1 ==> 0K
Data collector read server 2 on aries : UDP version 1 ==> (K
Data collector read server 3 on aries : TCP version 1 ==> (K
Data collector read server 3 on aries : UDP version 1 ==> (K
Data collector read server 4 on aries : TCP version 1 ==> OK
Data collector read server 4 on aries : UDP version 1 ==> 0K
Data collector read server 5 on aries : TCP version 1 ==> 0K
Data collector read server 5 on aries : UDP version 1 ==> (K
Data collector write server 1 on aries : TCP version 1 ==> 0K
Data collector write server 1 on aries : UDP version 1 ==> 0K
Data collector write server 2 on aries : TCP version 1 ==> 0K
Data collector write server 2 on aries : UDP version 1 ==> 0K
Data collector write server 3 on aries : TCP version 1 ==> 0K
Data collector write server 3 on aries : UDP version 1 ==> 0K
Data collector write server 4 on aries : TCP version 1 ==> 0K
Data collector write server 4 on aries : UDP version 1 ==> 0K

$

20.6 Testing all the device server running on a
host

This is a copy of the output of testcs started with the -h and -v option for one of
the ESRF machine control system VME

244CHAPTER 20. A TOOL TO TEST A TACO CONTROL SYSTEMBY E.TAUREL

$ testcs -h vme006 -v

Test host : vme006

DS plc/sy_s678 and pneumvalves/sy_s678 : UDP version 1 ==> 0K
DS plc/sy_s678 and pneumvalves/sy_s678 : TCP version 1 ==> 0K
DS plc/sy_s678 and pneumvalves/sy_s678 : UDP version 4 ==> 0K
DS plc/sy_s678 and pneumvalves/sy_s678 : TCP version 4 ==> 0K
DS r1pc/sy_s678 and ripc- channel/sy 8678 : UDP version 1 ==> (0K
DS ripc/sy_s678 and ripc- channel/sy s678 : TCP version 1 ==> 0K
DS arun/sy_s678 and pg_arun/sy_s678 : UDP version 1 ==> 0K

DS arun/sy_s678 and pg_arun/sy_s678 : TCP version 1 ==> 0K

DS arun/sy_s678 and pg_arun/sy_s678 : UDP version 4 ==> 0K

DS arun/sy_s678 and pg_arun/sy_s678 : TCP version 4 ==> 0K

DS magvaccoolingilds/sy and cellmagil/sy : UDP version 1 ==> 0K
DS magvaccoolingilds/sy and cellmagil/sy : TCP version 1 ==> 0K
DS thctrl/sy and srthc/sy : UDP version 1 ==> 0K

DS thctrl/sy and srthc/sy : TCP version 1 ==> 0K

DS thctrl/sy and srthc/sy : UDP version 4 ==> 0K

DS thctrl/sy and srthc/sy : TCP version 4 ==> 0K

$

On this output, you can remark that device server with several embedded classes
are tested as one server (plc/sy_s678 and pneumvalves/sy_s678 are part of the same
device server process). It is also possible to detect old device server which are
registered in the RPC layers with version 1 only (ripc/sy-s678 and magvaccoolingilds
servers).

20.7 Testing a complete control system

The following is a result of testcs started on a ESRF beam line control system with
the -a option

$testcs -a

Testing control system kernel components

Getting information from the whole control system

On large control system, this may needs time !

Getting information for : id101

Getting information for : id102

Getting information for : id106

Getting information for : tina

Control system with 34 server process(s) distributed on 4 host(s)
Testing device server(s) running on id101

Testing device server(s) running on id102

DS gpib/dummy and mcamb/id10 : UDP versionl ==> NOK !!!!t!

DS process PID found in database : 66

DS wxbpm/mcd defined in database on host id102 but not started
Testing device server(s) running on id106

Testing device server(s) running on tina

DS ud_daemon/ud_atte defined in database on host tina but not started

$

This exmaple does not use the verbose mode of testcs. From the output, you can
conclude that

e All the kernel conponents are running well (manager, database server and
data collector).

20.7. TESTING A COMPLETE CONTROL SYSTEM 245

e The control system is distributed on 4 hosts and uses 34 device servers.
e The deice server gpib/dummy is not running

e The device servers wxbpm/med and ud_daemon/ud_atte have not been started.

246CHAPTER 20. A TOOL TO TEST A TACO CONTROL SYSTEMBY E.TAUREL

Chapter 21

Adding Private Commands,
Errors and XDR Data Types
by J.Meyer and A.Gotz

21.1 Introduction

For more flexible and memory saving architecture, commands, errors and XDR data
types are treated as follows :

1. error strings can be generated dynamically by the server and returned to the
client as part of the dev_putget() call.

2. in addition strings can be stored as resources in the resource database.

3. a split up of the command and error numbers into several fields allows private
specifications for a device server.

4. there is a small kernel of general XDR data types which has to be linked to
every device server or client. All other data types are declared private and
must be explicitly loaded in a server or client process.

21.2 Dynamic Errors

TACO V8.18 supports dynamic error strings. This means error strings can be gener-
ated dynamically by the server and returned to the client using the dev_error_push()
call. This allows for much more flexible error treatment e.g. errors can be generated
in situ with very clear dynamically generated text indicating the exact error. Error
messages can be stacked on the server side to indicate the device or class where the
error was first detected. NOTE: when using dynamic error strings the error code
is ignored when retrieving the error string (obviously) but the client can still use it
to detect the type of error. For more details see the DSAPT section of this manual.
Example of using dev_error_push() :

long MyClass::my_cmd(MyClass my_device, void *vargin, void *vargout, long *error);
{

static char error_str[256];

long argin;

argin = *(long*)vargin;

247

248CHAPTER 21. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER 4

if (argin > my_device.maximum)

{

sprintf ("MyClass::my_cmd(): argin = %d exceeds maximum value allowed (max=%d)\n"
argin, my_device.maximum) ;

dev_error_push(error_str) ;

*¥error = DevErr_CommandFailed;

return (DS_NOTOK) ;

}

21.3 Error Numbers

The error number, defined as a long word, is split into four different fields:

|- Error Number
- Error category
— Device Server Identification

— Team Number

e Team Number:
A uniq number which is assigned to each developer team in the include file
DserverTeams.h. These numbers are managed by the machine control team.

#ifndef _DserverTeams_h
##define _DserverTeams_h

/*
* Definitions to code and decode the error and command numbers.
x/

#define DS_TEAM_SHIFT 26

#define DS_IDENT_SHIFT 18

#define DS_TEAM_MASK 0x3f

#define DS_IDENT_MASK Oxff

[*xkkxkkkxkkkkk Device server development Teams definitions sokkkskokksikokkkkk/

#define CntrlTeamNumber (1 << DS_TEAM_SHIFT) /* CS - Machine Control */

#define DasTeamNumber (2 << DS_TEAM_SHIFT) /* CS - Data Acquisition */
#define ProgTeamNumber (3 << DS_TEAM_SHIFT) /* Experiments -Programming */
#define CrgTeamNumber (4 << DS_TEAM_SHIFT) /* External - CRG */

#define BlcTeamNumber (5 << DS_TEAM_SHIFT) /* CS - Beam Line Control */

21.4. COMMAND NUMBERS 249

#endif /* _DserverTeams_h */

e Device Server Identification:
A uniq number to identify a device server class and its private definitions.
These numbers will be managed and assigned inside the programming teams.
Example (DasDsNumbers.h):

#ifndef _DasDsNumbers_h
#define _DasDsNumbers_h

#include <DserverTeams.h>

/* ESRF-VDL */

#define DevVdlBase DasTeamNumber + (1 << DS_IDENT_SHIFT)
/* ELTEC-IC40 */

#define DevIpcBase DasTeamNumber + (2 << DS_IDENT_SHIFT)
/* NOVELEC-MCCE */

#define DevMcceBase DasTeamNumber + (3 << DS_IDENT_SHIFT)
/* ESRF - SKELETON *x/

#define DevSkelBase DasTeamNumber + (4 << DS_IDENT_SHIFT)
/* LECROY 1151 — COUNTER*/

#define DevCntBase DasTeamNumber + (5 << DS_IDENT_SHIFT)
/* ESRF - TDC CI022 */

#define DevTdcBase DasTeamNumber + (6 << DS_IDENT_SHIFT)

/* CAEN V462 - GATEGEN x/
#define DevGategenBase DasTeamNumber + (7 << DS_IDENT_SHIFT)
/* ADAS ICV101 - ADC */
#define DevAdcicvl01Base DasTeamNumber + (8 << DS_IDENT_SHIFT)

/* ECT40 TFG */
#define DevTfgBase DasTeamNumber + (9 << DS_IDENT_SHIFT)
/* EC738 MCS */
#define DevMcsBase DasTeamNumber + (10 << DS_IDENT_SHIFT)
/* VVHIST x/
#define DevHcBase DasTeamNumber + (11 << DS_IDENT_SHIFT)
/* HM - MM6326 */
#define DevHmBase DasTeamNumber + (12 << DS_IDENT_SHIFT)
/* Current Transformer */
#define DevCtBase DasTeamNumber + (13 << DS_IDENT_SHIFT)

#endif /* _DasDsNumbers_h */
e Error Category:

Not yet used.
Reserved for a future classification of error messages.

e Error Number:
The original error number to identify the error.

21.4 Command Numbers

The command number, defined as a long word, is split into three different fields:

250CHAPTER 21. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER 4

|- Command Number

— Device Server Identification

Team Number

The distribution of Team Number and Device Server Identification is the
same as described in the last section.

21.5 Database Support

To avoid linking with long lists of error messages or command name strings, all
this text information is now stored as resources, in two new tables, of the static
database. The new tables are ERROR for error messages and CMDS for com-
mand name strings. To specify a private error and command in a device server
class, the following defines and resources are necessary.

Define the error code:

#define DevErr_MyError DevMyBase + Error_Number

Specify the error string as a resource in the database. Use the Team Number as
defined in DserverTeams.h and the Device Server Identification as defined, for your
class, in your programming team‘s identification file, in the resource path :

ERROR/Team Number/DS_Identification/Error Number: ”Error Message”

Example:
#define DevErr_SetHighLimit DevMcceBase + 15
ERROR/2/3/15: "Unable to set polarization high limit"
#define DevSetHighLimit DevMcceBase + 15
CMDS/2/3/15: "DevSetHighLimit"

All general errors and commands as they are defined in the include files De-

vErrors.h and DevCmds.h are loaded in the database as resources with the
Team_Number = 0 and the DS_Identification = 0. Only the error messages for API

and database errors are kept in a global error list.

In all versions of the API-library, starting with version 3.20, the functions dev_printerror_no(),
dev_error_str() and dev_cmd_query() use error and command resource defini-

tions. To relink older software should not cause problems, as long as these functions

are used and the global lists are not directly accessed.

21.6 Time Stamp for Error Messages

All error strings created by the API-library functions dev_printerror_no and
dev_error_str() include a time stamp before the error message. The returned
error strings are in the format:

”Sun Sep 16 01:03:52 1993 This is my error message.”

A description of the two error functions can be found in the man page dev_error.3x.

21.7. THE RESTRUCTURED XDR CONCEPT 251

21.7 The restructured XDR concept

In the last version all available XDR data types were known to servers and clients.
This growing list was abandoned in the new release (version 3.30). It is replaced
by a small kernel of general purpose data types and a dynamic list, which can hold
private XDR data types used by servers or clients.

The set of data types in the kernel is always available and automatically loaded.
All other XDR data types that should be used, must be explicitly loaded at startup
time of a server or client.

The implemented general purpose data types are:

1. D_.VOID_.TYPE
2. D BOOLEAN_TYPE
D_SHORT_TYPE

- w

D_.LONG_TYPE

o

D_FLOAT_TYPE
D_DOUBLE_TYPE
D_STRING_TYPE
D.INT.FLOAT_TYPE

© »®» N @

D_FLOAT READPOINT

10. D.STATE_FLOAT_READPOINT

11. D.LONG_READPOINT

12. D.DOUBLE_READPOINT

13. D_-VAR.CHARARR

14. D_.VAR_STRINGARR

15. D_-VAR_.SHORTARR

16. D_.VAR_.LONGARR

17. D_-VAR_.ULONGARR

18. D_VAR_FLOATARR

19. D_.VAR.DOUBLEARR

20. D_.VAR_FRPARR - Float Readpoint Array
21. D_.VAR_LRPARR - Long Readpoint Array
22. D_.OPAQUE_TYPE - Block of Bytes

To recompile your old software, which might use other XDR data types as the ones
mentioned in the above list, you have two possibilities.

1. To change the code and load all necessary XDR descriptions as described
in the next section. Like this you will link only with the XDR functions you
really need. The size of the executable will reduce.

252CHAPTER 21. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER 4

2. To change the include files (see section 7.4) and the Makefile to link
with the library

libdsxdr_all.a or 0s9-dsxdr_alllib.l

which will load all XDR data types known in the last versions up to 3.29.

21.8 Private XDR Data Types

21.8.1 Data Type Numbers

The data type number, defined as a long word, is split into three different fields:

|- Data Type Number

- Device Server Identification
- Team Number

The distribution of Team Number and Device Server Identification is the
same as described in section 2.

21.8.2 What is a Complete XDR Data Type Definition?

A XDR data type definition consists of a .h and a .c file. In the include file are
the C type definition, the declaration of the XDR functions , the declaration of the
XDR length calculation functions (for the data collector), the definition for the data
type number and the definition of the load macro.

Example (ct_xdr.h):

#include <DasDsNumbers.h>

/*
* definitions for current transformer data type

*/

struct DevCtIntLifeTime {
float Deltalntensity; /* delta-intensity for this measure */

float LifeTime; /* value of the life-time */
long DateTicks; /* date in ticks since midnight */
long DeltaTused; /* delta-T used for calculations */

};

typedef struct DevCtIntLifeTime DevCtIntLifeTime;

/* The declaration for the xdr function */

bool_t xdr_DevCtIntLifeTime ();

/* The declaration for the xdr length calculation function x/
long xdr_length_DevCtIntLifeTime ();

21.8. PRIVATE XDR DATA TYPES 253

struct DevVarCtIntLifeTimeArray {
u_int length;
DevCtIntLifeTime *sequence;
};
typedef struct DevVarCtIntLifeTimeArray DevVarCtIntLifeTimeArray;
/* The declaration for the xdr function */
bool_t xdr_DevVarCtIntLifeTimeArray ();

/* The declaration for the xdr length calculation function */
long xdr_length_DevVarCtIntLifeTimeArray ();

/* The definition of the data type number */
#define D_CT_LIFETIME DevCtBase + 1

/* The definition of the load macro */

#define LOAD_CT_LIFETIME(A) xdr_load_type (D_CT_LIFETIME, \
xdr_DevVarCtIntLifeTimeArray, \
sizeof (DevVarCtIntLifeTimeArray), \
xdr_length_DevVarCtIntLifeTimeArray, \
A)

The .c file contains the XDR functions and the XDR length calculation functions
for the data type.

More information on how to write a XDR function can be found in the HP, SUN
or 0OS9 documentation of NFS/RPC. In addition to the standard XDR functions,
all translation functions of the defined general purpose data types can be reused.
The XDR length calculation functions are structured in the same way as the XDR
functions. The length of each structure field has to be summed up to find the length
of the structure in XDR format. Reusable XDR length calculation functions are
available for all defined general purpose data types.

Example (ct_xdr.c):

#include <dev_xdr.h>
#include <ct_xdr.h>

bool_t

xdr_DevCtIntLifeTime (xdrs, objp)
XDR *xdrs;
DevCtIntLifeTime *objp;

if (!xdr_float(xdrs, &objp->Deltalntensity)) {
return (FALSE);

}

if (!xdr_float(xdrs, &objp->LifeTime)) {
return (FALSE);

}

if (!xdr_long(xdrs, &objp->DateTicks)) {
return (FALSE);

}

if (!xdr_long(xdrs, &objp->DeltaTused)) {
return (FALSE);

}

return (TRUE);

254CHAPTER 21. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER 4

long
xdr_length_DevCtIntLifeTime (objp)
DevCtIntLifeTime *objp;
{
long length = 0;

length = length + xdr_length_DevFloat (&objp->Deltalntensity);

length = length + xdr_length_DevFloat (&objp->LifeTime);
length = length + xdr_length_DevLong (&objp->DateTicks);
length = length + xdr_length_DevLong (&objp->DeltaTused);

return (length);

}
bool_t
xdr_DevVarCtIntLifeTimeArray(xdrs, objp)
XDR *xdrs;
DevVarCtIntLifeTimeArray *objp;
{
if (!xdr_array(xdrs, (char **)&objp->sequence,
(u_int *)&objp->length, ~0, sizeof (DevCtIntLifeTime),
xdr_DevCtIntLifeTime)) {
return (FALSE);
}
return (TRUE);
}
long

xdr_length_DevVarCtIntLifeTimeArray (objp)
DevVarCtIntLifeTimeArray *objp;

{
long length = 0;
/*
* four bytes for the number of array elements
*/

length = length + xdr_length_DevlLong (&objp->length);
/*
* mnow calculate the length of the array

*/

length = length + (objp->length *
xdr_length_DevCtIntLifeTime (&objp->sequence[0]));

return (length);

21.8. PRIVATE XDR DATA TYPES 255

21.8.3 How to Integrate a New Data Type?

The integration of a new, private XDR data type must be done in two steps. First,
the load macro of the data type must be called once at startup time of a server or a
client. The best place in a device server is the method DevMethodClassInitialise
to execute all necessary load macros. In a client the same macros have to be executed
before the data types are used.

Example:

long *error;

if (LOAD_CT_LIFETIME(error) == DS_NOTOK)
{
return (DS_NOTOK) ;

Second, the XDR functions of the data type must be linked to server and client.
This should be done locally first to test the data transfer. Afterwards the new XDR
data type can be used completely local for server and client, or can be integrated
to the XDR library. To make the data type visible to other clients who want to use
the service.

21.8.4 Available Data Types

The XDR library contains the data type for the kernel as described in section 6
and a number of hardware specific data types. Here is a list of all data types not
referenced in the kernel and their include files with the type definitions.

1.

2.

orok @

© ® 3N o

10.
11.
12.
13.
14.

bpm_xdr.h : D.BPM_POSFIELD, D_BPM_ELECFIELD

wsxdr.h : D-WS_BEAMFITPARM

vgexdr.h : D_.VGC_STATUS, D_VGC_GAUGE, D_VGC_CONTROLLER

ram xdr.h : D.NEG_STATUS, D_RAD_DOSE_VALUE

thc_xdr.h : D_.VAR_THARR, D_LIEN_STATE

hazxdr.h : D.HAZ_STATUS

vrif xdr.h : D_.VRIF_WDOG, D_VRIF_STATUS, D_VRIF_POWERSTATUS
gpibxdr.h : D_.GPIB_.WRITE, D_.GPIB.MUL_WRITE, D_GPIB_RES, D_GPIB_LOC
bpss_xdr.h : D_.BPSS_STATE, D_.BPSS_READPOINT, D_BPSS_LINE, D_.STATE_INDIC
pssxdr.h : D_.PSS_STATUS

rf xdr.h : D_.RF_SIGCONFIG

ct_xdr.h : D_.CT_LIFETIME

daemon xdr.h : D.DAEMON_STATUS, D_.DAEMON_DATA

seism xdr.h : D_.SEISM_EVENT, D_SEISM_STAT

256 CHAPTER 21. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER 4

15.
16.
17.
18.
19.
20.

21.

22

slit_xdr.h : D.BLADE_STATE, D_PSLIT _STATE

attexdr.h : D ATTE_ TYPE

maxe xdr.h : D MULMOVE_TYPE, D MOTOR_LONG, D MOTOR_FLOAT
icv101xdr.h : D.VAR_PATTERNARR, D_ICV_.MODE

mstatxdr.h : D_.VAR_MSTATARR

m4_xdr.h: D.-VAR_.LONGFLOATSET, D_.VAR_LONGREAD, D_VAR_POSREAD,
D_VAR_AXEREAD, D_-VAR_PARREAD, D_VAR_ERRREAD

grpxdr.h : D.GRPFP_TYPE
. pin_xdr.h : D_.PINSTATE_TYPE

21.9 Numbering Limits

Due

to the length of the bit fields in an error or command number the numbering

limits are:

21.
The

Imp

Bit Field Bits | Possible Numbers
Team Number 6 0-63

DS Identification 8 0- 255

Error Category 6 0-63

Error Number 12 0 - 4095
Command Number 18 0 - 262143

XDR Data Type Number | 18 0 - 262143

9.1 Master Copies

master copy of all sources can be found under the path
DSHOME=libra:/users/d/dserver

ortant files and pathes are:

e $DSHOME /include/DserverTeams.h

Containing all predefined programming team numbers.

e $DSHOME/include/CntrlDsNumbers.h

Containing the machine control groups‘s device server identifications.

e $DSHOME/include/DasDsNumbers.h

Containing the data acquisition groups‘s device server identifications.

¢ $DSHOME/include/BlcDsNumbers.h

Containing the beam line control groups‘s device server identifications.

e $DSHOME /system/api/cmds_err/res/dev_errors.res

Containing all error default error strings, which have to be loaded into the
resource database. The database table ERROR must be defined!

e $DSHOME /system/api/cmds_err/res/dev_cmds.res

Containing all default command name strings, which have to be loaded into
the resource database. The database table CMDS must be defined!

21.10. CONCLUSION 257

e $DSHOME/dev /system /xdr
The subdirectories include and src contain all .h and .c files for the XDR data
types which are available in the XDR library libdsxdr.a.

e libdsxdr_all.a or 0s9-dsxdr_alllib.1
The version of the API-library which loads automatically all XDR data types
which were available up to version 3.29.

21.10 Conclusion

The new versions of the API-and XDR-library, give the possibility to define private
commands, errors and XDR data types. The only condition is to respect the correct
Team_Number and DS_Identifaction for definitions and the resource pathes.
Attention:

If the numbering scheme is not respected resources of other classes or general re-
source definitions will be deleted. The ERROR and CMD tables in the resource
database are not yet protected.

Despite private definitions, the wheel should not be reinvented. Errors and com-
mands should be reused as long as an appropriate definition can be found in the
general files DevErrors.h and DevCmds.h.

Also, first try to reuse already existing XDR, data types before creating new ones.
In 80% of all cases the general purpose data types are sufficient.

258 CHAPTER 21. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER 4

Chapter 22

Interfaces

TACO has been interfaced to a number of other languages and programs. The main
interfaces are C and C++ and are described in a separate chapter. In addition
to these two languages the following languages/programs have been interfaced to
TACO :

e Python - contact Jens Meyer (meyer@esrf . fr) or Marie-Christine Dominguez
(domingue@esrf.fr)

e Tcl - contact Gilbert Pepellin (pepellin@esrf.fr)

e MathLab - contact Laurent Farvacque (laurent@esrf . fr) or Francis Epaud
(epaud@esrf.fr)

e LabView - contact Andy Gotz (goetz@esrf.fr)
e SPEC - contact Gerry Swislow (info@certif.com)

For more information refer to the website or contact the person involved directly.

259

260 CHAPTER 22. INTERFACES

Appendix A

Device Server Catalogue

A.1 Introduction

Looking for a device server ? Thinking of writing a device server but you don’t know
if it is written 7 Maybe this catalogue can help you. Literally hundreds of TACO
device servers exist (over two hundred alone at the ESRF). This list presents device
servers which could be of general interest to other users (most of them support
commercial hardware) written at the ESRF and other sites using TACO (FRMII,
HartRAO, Lure, etc.). Device servers for site specific hardware are not listed here,
refer to the each site’s documentation for these. The present list is far from complete
so if you know of a device server which is not listed on this page but you think could
be of interest to other users please send an email to goetz@esrf.fr.

A.2 Motors
A.2.1 Oregon (VME/PC-104)

e description : a device server for the multiple axes motor controller Ore-
gon VMES58 (VME format) and PC68 (PC-104 format) cards from OMS
(http://www.omsmotion.com). The device server supports the Maxe device
server interface. The same device server supports both the VME and PC-104
card.

e author(s) : Andy Gotz (goetzQesrf.fr)
o documentation : none

e hardware : VME, VMES58 (VME motor control from OMS), CC133 (VME
relative encoder) [optional], or PC-104 + PC68 (PC-104 motor controller from
OMS)

e platforms : Linux/68k (VME) and Linux/x86 (PC-104)
e language : written in C++

e note : maximum steprate is 1 MHz

A.2.2 Galil (VME)

e description : a device server for the DMC 1300 DC motor controller VME
card from Galil. Device server supports an external gate synchronised to the
motor position. Microprograms can be downloaded and executed.

261

262

APPENDIX A. DEVICE SERVER CATALOGUE

author(s) : M.Perez (perezQesrf.fr)
documentation : DSUG174

hardware : VME + DMC1300 motor card.
platforms : OS9

language : written in C

note :

A.2.3 Flexmotion (cPCI)

description : a device server for the multiple axes motor controller FlexMo-
tion from National Instruments for compact PCI. The device server supports
the Maxe device server interface. Presently no support for encoders or micro-
programming.

author(s) :Andy Gotz (goetzQesrf.fr)
documentation : none

hardware : ¢PCI, FlexMotion (¢cPCI card)
platforms : Linux/x86

language : written in C++

note : only used in the lab

A.2.4 Huber (GPIB)

description : a device for controlling Huber motors via GPIB.
author(s) : V.Rey (rey@esrf.fr)

documentation : DSUG106

hardware : Huber motors + I0Tech SCSI-GPIB controller
platforms : Solaris

language : written in C

note :

A.2.5 Berger (serial line)

description : device server for Berger motor controller via serial line.
author(s) : C.Penel (penel@esrf.fr)

documentation : DSUG048

hardware : VME + serial line + Berger motor controller

platforms : 0S9

language : written in C

note :

A.3.

CCD CAMERAS 263

A.2.6 VPAP (VME)

description : device server for the ESRF developed 8-axes motor controller
for VME

author(s) : M.C.Dominguez (domingue@esrf.fr) (originally T.Mett&la)
documentation : DSUG093

hardware : VME + VPAP

platforms : OS9 and Linux

language : C (0S9) and C++ (Linux)

note :

A.3 CCD Cameras

A.3.1 Sensicam (PC/Windows)

description : device server for the fast readout 12 bit Sensicam CCD cameras
from Optimas.

author(s) : Vicente Rey (rey@esrf.fr), Andy Gotz (original version)
documentation : none

hardware : Windows PC + Sensicam interface card + CCD camera
platforms : Windows

language : written in C

note :

A.3.2 Matrox (PC/Windows)

description : device server for Matrox family of video grabbers.
author(s) : Jens Meyer (meyer@esrf.fr) + Holger Witsch (witsch@esrf.fr)
documentation : none

hardware : Windows PC + Matrox frame grabber + CCD camera
platforms : Windows

language : written in C

note : supports provided for doing image analysis on acquired image

264

APPENDIX A. DEVICE SERVER CATALOGUE

A.3.3 Medoptics (PC/Windows)

description : device server for 16 bit CCD camera from Medoptics.
author(s) : Andy Gotz (goetz@Qesrf.fr)

documentation : none

hardware : Windows PC + Medoptics interface card + CCD camera
platforms : Windows

language : written in C

note :

A.3.4 Imagepro (PC/Windows)

description : device server for image acquisition and analysis software Im-
agePro Plus from Media Cybernetics. Supports acquiring images and calling
macros.

author(s) : Andy Gotz (goetzQesrf.fr)

documentation : DSUG205

hardware : Windows PC + ImagePro + CCD camera

platforms : Windows

language : written in C

note : ImagePro supports a large number of interface cards and cameras e.g.

Matrox, Sensicam, Photonics Science, TWAIN, ..., and has been extended at
the ESRF to support the Frelon and Medoptics.

A.3.5 Mar (PC/Linux)

description : device server for the Mar CCD camera. Device server is usually
forked by the Mar GUI application. Communication is via pipes.

author(s) : A. G6tz
documentation : DSUG211
hardware : Linux PC + Mar CCD
platforms : Linux/x86

language : written in C++

note :

A4

DATA ANALYSIS 265

A.3.6 Frelon (PCI/Linux/Solaris)

description : device server for the ESRF developed Frelon CCD camera.
This is a true 14 bit camera with tens of millisecond readout times. 1kxlk or
2kx2k (Frelon 2000).

author(s) : D.Fernandez (dfernandez@esrf.fr)
documentation : ?

hardware : Linux PC or Solaris workstation + Frelon CCD
platforms : Linux/x86 or Solaris

language : written in C

note :

A.4 Data Analysis
A.4.1 Matlab (Unix/Windows)

description : a device server which starts a Matlab engine and allows clients
to send and get arrays and/or strings and evaluate Matlab commands. This
allows remote clients to collect data, send it to Matlab and analyse it in an
automatic fashion.

author(s) : A.Gotz (goetzQesrf.fr)

documentation : DSUG212

hardware : Matlab licence

platforms : Windows and Linux

language : two version, one written in C and one in C++

note : C version for Windows, C++ version for Linux

A.5 Sample Environment

A.5.1 Linkam Thermal Stage (serial line)

description : a sample temperature environment controller from Linkam for
controlling temperature.

author(s) : Andy Gotz (goetzQesrf.fr)
documentation : DSUG213
hardware : Linkam device + serial line
platforms : Linux/x86

language : C++

note : http://www.linkam.co.uk

266

APPENDIX A. DEVICE SERVER CATALOGUE

A.5.2 Impac Pyrometer (serial line)

description : a pyrometer for reading temperature at a distance from Impac.
Models exist for low (300 to 1200) and high (300 to 3000) temperatures.

author(s) : Andy Gotz (goetzQesrf.fr)
documentation : ?

hardware : Impac pyrometer + serial line
platforms : Linux/x86

language : C++

note : http://www.ir-impac.com

A.6 Input/Output

A.6.1 Wago (serial line / ethernet)

description : a device server for the Wago modbus 750 series of input /output
modules

author(s) : A.Gotz (goetz@Qesrf.fr)
documentation : Wago.pdf
hardware : serial line or ethernet
platforms : Linux/x86

language : written in C++

note : http://www.wago.com

A.6.2 Redlion Thermocouple (serial line)

description : a device server for the Redlion thermocouple controller.
author(s) : A.Gotz (goetz@Qesrf.fr)

documentation : Redlion.pdf

hardware : serial line

platforms : Linux/x86

language : written in C++

note : http://www.redlion-controls.com

A.6.

INPUT/OUTPUT 267

A.6.3 ICV150 (VME)

description : a device server for the multichannel VME ADC card ICV150
from ADAS.

author(s) : A.Beteva (beteva@esrf.fr)
documentation : DSUG177
hardware : VME + ICV150
platforms : 0S9

language : written in C

note :

A.6.4 ICV712/ICV716 (VME)

description : a device server for the 8/16 channel DAC VME card ICV712/ICV716
from ADAS

author(s) : A.Beteva (betevaQesrf.fr)
documentation : DSUG046
hardware : VME + ICV712/ICV716
platforms : OS9

language : written in C

note :

A.6.5 ICV101 (VME)

description : a device server for the fast (MHz) analog to digital VME card
ICV101 with on board memory from ADAS.

author(s) : F.Epaud (epaud@esrf.fr), T.Mettald (original version)
documentation : DSUG109

hardware : VME + ICV101

platforms : 0OS9

language : written in C

note :

A.6.6 DM5210 (PC-104)

description : a device server for the PC-104 analog and digital input/ output
card DM5210.

author(s) : A.Go6tz (goetzQ@esrf.fr)
documentation : none
hardware : PC-104 + DM5210
platforms : Linux/x86

language : written in C++

note :

268

APPENDIX A. DEVICE SERVER CATALOGUE

A.7 Counters/Timers

A.7.1 Lecroy 1151 (VME)

description : device server for the VME 1151 counter from Lecroy.
author(s) : F.Epaud (epaud@esrf.fr)

documentation : DSUG087

hardware : VME + Lecroy 1151

platforms : OS9

language : C

note :

A.7.2 CAEN V462 (VME)

description : device server for the VME V462 gate generator from CAEN.
author(s) : F.Epaud (epaud@esrf.fr)

documentation : DSUG088

hardware : VME + V462

platforms : OS9

language : C

note :

A.8 Multichannel Analysers

A.8.1 Canberra AIM (PC/Windows or Unix)

description : device server for the AIM MCA from Canberra. The AIM is
interfaced via Ethernet. The device server can run on Windows using the
Canberra libraries or on Unix (HP-UX and Solaris) using libraries written by
the ESRF.

author(s) : A.Beteva (beteva@esrf.fr)

documentation : DSUG146

hardware : AIM module + PC/Workstation

platforms : Windows + HP-UX + Solaris

language : C

note :

A.9. IMAGE PLATES 269

A.9 Image Plates
A.9.1 MAR345 (PC/Linux)

e description : a device server for the MAR345 image plate scanner from Mar.
e author(s) : L.Claustre (claustreQesrf.fr)

e documentation : DSUG207

e hardware : MAR345 scanner

e platforms : Linux

e language : C++

e note :

270 APPENDIX A. DEVICE SERVER CATALOGUE

Appendix B

Licence

TACO is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free software--to make sure
the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you
wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to

deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute

271

272 APPENDIX B. LICENCE

copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If
the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The "Program", below, refers to any such
program or work, and a "work based on the Program" means either the Program
or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term "modification".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the
Program does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you

273

may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

* a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

* b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

* c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use
in the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself
is interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves, then
this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections
as part of a whole which is a work based on the Program, the distribution of
the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sectiomns 1
and 2 above provided that you also do one of the following:

* a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2

above on a medium customarily used for software interchange; or,

* b) Accompany it with a written offer, valid for at least three years,

274 APPENDIX B. LICENCE

to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

* c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not

275

excuse you from the conditions of this License. If you cannot distribute so
as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both
it and this License would be to refrain entirely from distribution of the
Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this Licemnse.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded.
In such case, this License incorporates the limitation as if written in the
body of this Licemnse.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditiomns
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

276 APPENDIX B. LICENCE

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS) , EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

